Homework Assignment #1A

Note

This assignment is due 2:10PM Tuesday, October 11, 2016. Please write or type your answers on A4 (or similar size) paper. Drop your homework by the due time in Yih-Kuen Tsay's mail box on the first floor of Management Building 2. Late submission will be penalized by 20% for each working day overdue. You may discuss the problems with others, but copying answers is strictly forbidden.

Problems

- 1. Solve the following exercise problems in Stallings' book (6th edition): 1.1 (10 points), 2.1 (10 points), 2.18 (10 points), 3.1(b) (5 points), 3.4 (10 points), 3.8 (TD_i is the transformation defined by the *i*-th iteration of decryption; 10 points), 4.14 (5 points), 4.19(a)(b) (10 points), 4.26 (10 points), 4.27 (multiplicative inverse of $x^3 + x$; 10 points).
- 2. A permutation operation on $n (\geq 1)$ distinct objects (arranged in some order so that each object is uniquely identifiable by a number in $\{1, 2, \dots, n\}$) can be represented by a table listing a permutation of the numbers from $\{1, 2, \dots, n\}$ in the following sense: if the *i*-th entry of the table is p_i , then the new *i*-th object will be the original p_i -th object.

For example, the following P is a permutation operation on 8 objects:

$$P = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 2 & 7 & 3 & 8 & 6 & 1 & 5 \end{bmatrix}$$

Given the input $M = \langle M_1, M_2, M_3, M_4, M_5, M_6, M_7, M_8 \rangle$, *P* produces the output $P(M) = \langle M_4, M_2, M_7, M_3, M_8, M_6, M_1, M_5 \rangle$.

(a) Give the inverse permutation of the above P using the same representation.

(5 points)

(b) Let $[r_1r_2\cdots r_{n-1}r_n]$ be the inverse of a given permutation $[p_1p_2\cdots p_{n-1}p_n]$. Describe in precise terms the relation between r_i 's and p_i 's. (5 points)