Information Security -- Part II Asymmetric Ciphers

Frank Yeong-Sung Lin
Information Management Department
National Taiwan University

Outline

- Introduction to information security
- Introduction to public-key cryptosystems
- RSA
- Diffie-Hellman key exchange
- ECC
- Mutual trust
- Key management
- User authentication

Areas Considered by Info. Security

- Secrecy (Confidentiality): keep information unrevealed
- Authentication: determine the identity of whom you are talking to
- Nonrepudiation: make sure that someone cannot deny the things he/she had done
- Integrity control: make sure the message you received has not been modified
- Availability: make sure the resource be available for authorized personnel when needed

Essential Concepts for Info. Security

- Risk management
- threats, vulnerabilities, assets, damages and probabilities
- balancing acts
- all cryptosystems may be compromised (trade-off between overhead and expected time span of protection)
- Notion of chains (Achilles' heel)
- Notion of buckets (products, policies, processes and people)
- Defense in-depth
- Average vs. worst cases
- Backup, restoration and contingency plans

A Number of Interesting Ciphers

- Chinese poems
- Clubs and leather stripes
- Invisible ink (steganography in general)
- Books
- Code books
- Enigma
- XOR (can be considered as an example of symmetric cryptosystems)
- Ej/vu3z8h96
- Scramblers (physical and application layers)

Principles of Public-Key Cryptosystems

Public vs Nonpublic Unlike Private key cryptography, there is no need to share keys. Instead, there is a public "phone number" available to any potential user and a private key.
$\stackrel{\mathrm{M}}{\mathrm{M}}=-\mathrm{C}=-$ TRANSMISSIONLINE $\mathrm{C}=-$ DECRYPT $^{\mathrm{M}}=-$

Principles of Public-Key Cryptosystems (cont'd)

- Requirements for PKC
- easy for B (receiver) to generate KU_{b} and KR_{b}
- easy for A (sender) to calculate $\mathrm{C}=\mathrm{E}_{\mathrm{KUb}}(\mathrm{M})$
- easy for B to calculate $M=D_{K R b}(C)=D_{K R b}\left(E_{K U b}(M)\right)$
- infeasible for an opponent to calculate KR_{b} from KU_{b}
- infeasible for an opponent to calculate M from C and KU_{b}
- (useful but not necessary) $\mathrm{M}=\mathrm{D}_{\mathrm{KRb}}\left(\mathrm{E}_{\mathrm{KUb}}(\mathrm{M})\right)=$ $\mathrm{E}_{\mathrm{KUb}}\left(\mathrm{D}_{\mathrm{KRb}}(\mathrm{M})\right)$ (true for RSA and good for authentication)

Principles of Public-Key Cryptosystems (cont'd)

TRAPDOOR

Public Key Cryptography (PKC) is based on the idea of a trapdoor function $f: X \longrightarrow Y$, i.e.,

- f is one-to-one,
- f is easy to compute,
- f is public,
- f^{-1} is difficult to compute,
- f^{-1} becomes easy to compute if a trapdoor is known.

Principles of Public-Key Cryptosystems (cont'd)

- The idea of PKC was first proposed by Diffie and Hellman in 1976.
- Two keys (public and private) are needed.
- The difficulty of calculating f^{-1} is typically facilitated by
- factorization of large numbers
- resolution of NP-completeness
- calculation of discrete logarithms
- High complexity confines PKC to key management and signature applications

Principles of Public-Key Cryptosystems (cont'd)

(a) Encryption

Principles of Public-Key Cryptosystems (cont'd)

Principles of Public-Key Cryptosystems (cont'd)

- Comparison between conventional (symmetric) and public-key (asymmetric) encryption

Conventional Encryption	Public-Key Encryption
Needed to Work:	Needed to Work:

Principles of Public-Key Cryptosystems (cont'd)

- Applications for PKC
- encryption/decryption
- digital signature
- key exchange

Algorithm	Encryption/Decryption	Digital Signature	Key Exchange
RSA	Yes	Yes	Yes
Diffie-Hellman	No	No	Yes
DSS	No	Yes	No

Principles of Public-Key Cryptosystems (cont'd)

Figure 6.2 Public-Key Cryptosystem: Secrecy

Principles of Public-Key Cryptosystems (cont'd)

Figure 6.3 Public-Key Cryptosystem: Authentication

Principles of Public-Key Cryptosystems (cont'd)

Figure 6.4 Public-Key Cryptosystem: Secrecy and Authentication

The RSA Algorithm

- Developed by Rivest, Shamir, and Adleman at MIT in 1978
- First well accepted and widely adopted PKC algorithm
- Security based on the difficulty of factoring large numbers
- Patent expired in 2001

The RSA Algorithm（cont＇d）

EULER＇S TOTIENT FUNCTION

$\phi(x)$ is the number of non－negative integers less than m which are relatively prime to m．

n	$\phi(n)$	n	$\phi(n)$	n	$\phi(n)$
1	0	10	4	19	18
2	1	11	10	20	8
3	2	12	4	21	12
4	2	13	12	22	10
5	4	14	6	23	22
6	2	15	8	24	8
7	6	16	8	25	20
8	4	17	16	26	12
9	4	18	6	27	18

Some Inportant walues of $\phi(x)=$

72	$\phi(x)=$	Conditions
P	$p-1$	p Drime
p^{n}	$p^{2 x}-p^{2 x}-1$	p prime
$s-t$	$\phi(s) \cdot \phi(t)$	$g \subset d(s, t)=1$
P－x	$(p-1)-(q-1)$	p, q prime

＊互質，又稱互素。若 N 個整數的最大公因數是 1 ，則稱這 N 個整數互質。

The RSA Algorithm (cont'd)

RSA CRYPTOSYSTEM

$n, p, q: D e f i n e m=p q$ where p and q are large primes.
$d, e: \operatorname{gcd}(e, \phi(n))=1$ and ed $\equiv 1(\bmod \phi(n))$
$M: M$ is the number representing the message to be encrypted.
$C: C$ is the number representing the "Cyphertext" (i.e., the encrypted text).

Public Infornation: n, e.

Private Information: d.

The RSA Algorithm (cont'd)

The RSA Algorithm

The RSA Algorithm (cont'd)

PRIMES

An integer $n>1$ is prime if 1 and n are its only divisors.

Euclid: There are infinitely many primes.
If $p_{1}<p_{2}<\cdots<p_{n}$ are the first n primes then any prime divisor of the integer $1+p_{1} p_{2} \cdots p_{n}$ must be larger than p_{n}.

The number $\pi(n)$ of primes $\leq n$ is asymptotically equal to $\frac{n}{\ln n}$.

The RSA Algorithm (cont'd)

2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83		
101	103	107	109	113	127	131	137	139	149	151	157	163	167	173	179	181	191	193	197	199				
211	223	227	229	233	239	241	251	257	263	269	271	281	283	293										
307	311	313	317	331	337	347	349	449	457	461	463	467	479	487	491	499								
401	409	419	421	431	433	439	443	449	457	461	463	467	479	487	491	499								
503	509	521	523	541	547	557	563	569	571	577	587	593	599											
601	607	613	617	619	631	641	643	647	653	659	661	673	677	683	691									
701	709	719	727	733	739	743	751	757	761	769	773	787	797											
809	811	821	823	827	829	839	853	857	859	863	877	881	883	887										
907	911	919	929	937	941	947	953	967	971	977	983	991	997											
1009	1013	1019	021	1031	1033	039	1049	10511	061	1063	1069	087	1091	1093	1097									
1103	1109	1117	1231	129115	111	3116	31171	1181	11871	193														
1201	1213	1217	223	122912	23112	3712	49125	91277	1279	1283	1289	291												
1301	1303	1307	319	32113	2713	1313	67137	31381	1399															
1409	1423	1427	429	43314	3914	4714	145	31459	1471	1481	1483	4871	4891	493149										
1511	1523	1531	543	54915	5315	59156	67157	11579	1583	1597														
1601	1607	1609	613	61916	2116	2716	37 165	71663	1667	1669	1693	697												
1709	1721	1723	733	74117	747	5317	759 177	71783	1787	1789														
	$\begin{aligned} & 1811 \\ & 1907 \end{aligned}$	$\begin{aligned} & 1823 \\ & 1913 \end{aligned}$	$\begin{aligned} & 1831 \\ & 1931 \end{aligned}$	$\begin{aligned} & 84718 \\ & 93319 \end{aligned}$	$\begin{aligned} & 6118 \\ & 64919 \end{aligned}$	$\begin{aligned} & 6718 \\ & 5119 \end{aligned}$	$\begin{aligned} & 7187 \\ & 73197 \end{aligned}$	$\begin{aligned} & 31877 \\ & 01987 \end{aligned}$	$\begin{aligned} & 7879 \\ & 71093 \end{aligned}$	$\begin{aligned} & 1889 \\ & 199^{\prime} \end{aligned}$														

Primes under 2000

The RSA Algorithm (cont'd)

- The above statement is referred to as the prime number theorem, which was proven in 1896 by Hadaward and Poussin.

x	$\pi(x)$	$x / \ln x$	$(\pi(x) \times \ln x) / x$
10^{3}	168	144.8	1.160
10^{4}	1229	1085.7	1.132
10^{5}	9592	8685.9	1.104
10^{6}	78498	74382.4	1.085
10^{7}	664579	620420.7	1.071
10^{8}	5761455	5428681.0	1.061
10^{9}	50847534	48254942.4	1.054
10^{10}	455052512	434294481.9	1.048

The RSA Algorithm (cont'd)

- Whether there exists a simple formula to generate prime numbers?
- An ancient Chinese mathematician conjectured that if n divides $2^{n}-2$ then n is prime. For $n=3$, 3 divides 6 and n is prime. However, for $n=341$ $=11 \times 31, n$ dives $2^{341}-2$.
- Mersenne suggested that if p is prime then $M_{p}=$ $2^{p}-1$ is prime. This type of primes are referred to as Mersenne primes*. Unfortunately, for $p=$ $11, M_{11}=2^{11}-1=2047=23 \times 89$.

The RSA Algorithm (cont'd)

*In mathematics, a Mersenne number is a positive integer that is one less than a power of two:
$M_{n}=2^{n}-1$.
Some definitions of Mersenne numbers require that the exponent n be prime.

A Mersenne prime is a Mersenne number that is prime. As of September 2008, only 46 Mersenne primes are known; the largest known prime number $\left(2^{43,112,609}-1\right)$ is a Mersenne prime, and in modern times, the largest known prime has almost always been a Mersenne prime. Like several previously-discovered Mersenne primes, it was discovered by a distributed computing project on the Internet, known as the Great Internet Mersenne Prime Search (GIMPS). It was the first known prime number with more than 10 million digits.

The RSA Algorithm (cont'd)

- Fermat conjectured that if $F_{n}=2^{2^{n}}+1$, where n is a non-negative integer, then F_{n} is prime. When n is less than or equal to $4, F_{0}=3, F_{1}=$ $5, F_{2}=17, F_{3}=257$ and $F_{4}=65537$ are all primes. However, $F_{5}=4294967297=641 \times$ 6700417 is not a prime number.
- $n^{2}-79 n+1601$ is valid only for $n<80$.
- There are an infinite number of primes of the form $4 n+1$ or $4 n+3$.
- There is no simple way so far to gererate prime numbers.

The RSA Algorithm (cont'd)

Bertrand's Postulate For any integer there is always a prime between $n+1$ and $2 n$. A beautiful elementary proof is due to Erdös.

Open problem of Hardy and Wright: Is there a prime between n^{2} and $(n+1)^{2}$?

The RSA Algorithm (cont'd)

- Prime gap: displacement between two consecutive prime numbers
-0 the smallest
- unbounded from above
$-n!+2$ (devisable by 2), $n!+3$ (devisable by 3 , $n!+4$ (devisable by 4$), \ldots, n!+n($ devisable by $n)$ are not prime

The RSA Algorithm (cont'd)

- Format's Little Theorem (to be proven later): If p is prime and a is a positive integer not divisible by p, then

$$
a^{p-1} \equiv 1 \bmod p
$$

Example: $a=7, p=19$

$$
\begin{aligned}
& 7^{2}=49 \equiv 11 \bmod 19 \\
& 7^{4}=121 \equiv 7 \bmod 19 \\
& 7^{8}=49 \equiv 11 \bmod 19 \\
& 7^{16}=121 \equiv 7 \bmod 19 \\
& a^{p-1}=7^{18}=7^{16+2} \equiv 7 \times 11 \equiv 1 \bmod 19
\end{aligned}
$$

The RSA Algorithm (cont'd)

HON IT WORKS

RSAEncryption: $M \longrightarrow E(M):=M^{e} \equiv C$ mod n

RSA Decryption: $C \rightarrow D(C):=C^{d} \equiv M$ mod n.

When and Why it Norks: Recall that $\phi(n)=$ $(p-1)(q-1)$. For RSA to work $M<n$, $\operatorname{gcd}(e,(p-1)(q-1))=1, p$ and q are prime and $d e \equiv 1(\bmod (p-1)(q-1))$.

RSA works because: $C^{d} \equiv\left(M^{e}\right)^{d} \equiv M^{e d} \equiv$ $M^{1+k(p-1)(q-1)}(\bmod n)$

Assume that $\operatorname{gcd}(M, q)=\operatorname{gcd}(M, p)=1$. Then by Fermat's Little Theorem:
$\left.C^{d} \equiv M^{d}\left(M^{p-1}\right)^{k(q-1}\right) \equiv M^{k}(1)^{k(p-1)} \equiv M(\bmod p)$
$C^{d} \equiv M\left(M^{q-1}\right)^{k(p-1)} \equiv M(1)^{k(q-1)} \equiv M(\bmod q)$
Therefore $C^{d} \equiv M(\bmod n)$.

The RSA Algorithm (cont'd)

- $A=M+i p$ for a non-negative integer i.
- $A=M+j q$ for a non-negative integer j.
- From the above two equations, $i p=j q$.
- Then, $i=k q$. (p and q are primes.)
- Consequently, $A=M+i p=M+k p q$. Q.E.D. (quod erat demonstrandum)

The RSA Algorithm (cont'd)

Figure 6.6 Example of RSA Algorithm

The RSA Algorithm (cont'd)

- Example 1
- Select two prime numbers, $p=7$ and $q=17$.
- Calculate $n=p \times q=7 \times 17=119$.
- Calculate $\Phi(n)=(p-1)(q-1)=96$.
- Select e such that e is relatively prime to $\Phi(n)$ $=96$ and less than $\Phi(n)$; in this case, $e=5$.
- Determine d such that $d \times e \equiv 1 \bmod 96$ and d <96. The correct value is $d=77$, because $77 \times 5=385=4 \times 96+1$.

The RSA Algorithm (cont'd)

- Example 2: $p=101, q=113, n=11413$. Then $\phi(n)=(p-1)(q-1)=11200=2^{6} 5^{2} 7$. So any integer not divisible by $2,5,7$ can be used as a public key. We can choose $e=3533$. Using the Euclidean algorithm we easily compute $e^{-1} \bmod 11200=6597$.

The RSA Algorithm (cont'd)

OPERATIONS ON NUMBERS
Addition of two k-bit numbers can be done in time $O(k)$.

010110101
11010010
110000111

Multiplication of two k-bit numbers can be done in time $O\left(k^{2}\right)$.

1011
110
0000
1011
1011
100010

Both are well-known algorithms. Of course there are "faster" algorithms (see Knuth's: "Art of Computer Programming"').

Exponentiation of two k-bit numbers can be done in time $O\left(k^{3}\right)$.

The RSA Algorithm (cont'd)

Example: $p=5, q=7, n=35$.
Can choose $e=11$. Let the message be $M=$ 12. To compute 12^{11} mod 35.

First write (11) $10=(1011)_{2}$. Then calculate

$$
\begin{aligned}
M^{11} & =M_{1}^{1 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}} \\
& =\left(M^{\left.1 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}\right)^{2} M}\right. \\
& =\left(\left(M^{1 \cdot 2^{1}+0 \cdot 2^{0}}\right)^{2} M\right)^{2} M \\
& =\left(\left(M^{2}\right)^{2} M\right)^{2} M
\end{aligned}
$$

The formal algorithm is as follows: Compute the binary representation of $e=\sum_{i=1}^{k=1} e_{i} 2^{i}$, where $k=\left\lceil\log _{2}\right\rceil$ and perform the following algorithm:

$$
\begin{aligned}
& \text { Procedure exponentiation }(x, e, n) \\
& z:=1 \\
& \text { for } i=k-1 \text { downto o do } \\
& z:=z^{2} \text { mod } n \\
& \text { if } e_{i}=1 \text { then } z:=z \cdot x \text { mod } n \\
& \text { return } x^{e} \text { mod } n
\end{aligned}
$$

The RSA Algorithm (cont'd)

- Key generation
- determining two large prime numbers, p and q
- selecting either e or d and calculating the other
- Probabilistic algorithm to generate primes
- [1] Pick an odd integer n at random.
- [2] Pick an integer $a<n$ (a is clearly not divisible by n) at random.
- [3] Perform the probabilistic primality test, such as Miller-Rabin. If n fails the test, reject the value n and go to [1].
- [4] If n has passed a sufficient number of tests, accept n; otherwise, go to [2].

The RSA Algorithm (cont'd)

- How may trials on the average are required to find a prime?
- from the prime number theory, primes near n are spaced on the average one every $(\ln n)$ integers
- even numbers can be immediately rejected
- for a prime on the order of 2^{200}, about $\left(\ln 2^{200}\right) / 2=$ 70 trials are required
- To calculate e, what is the probability that a random number is relatively prime to $\Phi(n)$? About 0.6.

The RSA Algorithm (cont'd)

- For fixed length keys, how many primes can be chosen?
- for 64-bit keys, $2^{64} / \ln 2^{64}-2^{63} / \ln 2^{63} \approx 2.05 \times 10^{17}$
- for 128 - and 256 -bit keys, 1.9×10^{36} and 3.25×10^{74}, respectively, are available
- For fixed length keys, what is the probability that a randomly selected odd number a is prime?
- for 64-bit keys, $2.05 \times 10^{17} /\left(0.5 \times\left(2^{64}-2^{63}\right)\right) \approx 0.044$ (expectation value: $1 / 0.044 \approx 23$)
- for 128- and 256-bit keys, 0.022 and 0.011 , respectively

The RSA Algorithm (cont'd)

- The security of RSA
- brute force: This involves trying all possible private keys.
- mathematical attacks: There are several approaches, all equivalent in effect to factoring the product of two primes.
- timing attacks: These depend on the running time of the decryption algorithm.

The RSA Algorithm (cont'd)

- To avoid brute force attacks, a large key space is required.
- To make n difficult to factor
$-p$ and q should differ in length by only a few digits (both in the range of 10^{75} to 10^{100})
- both $(p-1)$ and $(q-1)$ should contain a large prime factor
$-\operatorname{gcd}(p-1, q-1)$ should be small
- should avoid $e \ll n$ and $d<n^{1 / 4}$

The RSA Algorithm (cont'd)

- To make n difficult to factor (cont'd)
$-p$ and q should best be strong primes, where p is a strong prime if
- there exist two large primes p_{1} and p_{2} such that $p_{1} \mid p-1$ and $p_{2} \mid p+1$
- there exist four large primes r_{1}, s_{1}, r_{2} and s_{2} such that

$$
r_{1}\left|p_{1}-1, s_{1}\right| p_{1}+1, r_{2} \mid p_{2}-1 \text { and } s_{2} \mid p_{2}+1
$$

$-e$ should not be too small, e.g. for $e=3$ and $\mathrm{C}=$ $\mathrm{M}^{3} \bmod n$, if $\mathrm{M}^{3}<n$ then M can be easily calculated

The RSA Algorithm (cont'd)

FACTORING ALGORITHMS

Problem: Factor a given n.
This is a very important problem. No efficient algorithm (i.e., running in time polylogarithmic in n) is known.

The 1996 challenge referred to an RSA challenge with a key length of 130 decimal digits. Implementation was done on the Internet.

Decimal	Year	MIFS	Algorithm	
Digits	Achieved	Years		
100	1991	7	Q Siewe	
110	1992	75	2	Siewe
120	1993	830	2 Siewe	
130	1996	500	Cen Num Field	

MIPS-Years is Millions of Instructions Per Second counted in Years, e.g. a Pentium 200 is a 50 MIPS machine.

The RSA Algorithm (cont'd)

- Major threats
- the continuing increase in computing power (100 or even 1000 MIPS machines are easily available)
- continuing refinement of factoring algorithms (from QS to GNFS and to SNFS)

The RSA Algorithm (cont'd)

Figure 6.9 MiPS-years Needed to Factor

The RSA Algorithm (cont'd)

Experimental Rumning Tinnes

Key length selection for $R S A$ depends on intended security and expected key lifetinne. E.g., if you vant your keys to remain secure for 20 years a key 1,024 bits long is too short!

Table for factoring times in NFS and SNFS.

\nRightarrow Of Bits	$N F S-N 11 P S$	$S N F S-N 11 P S$
512	$3 \cdot 10^{4}$	<200
768	$2 \cdot 10^{8}$	$1 \cdot 10^{5}$
1024	$3 \cdot 10^{11}$	$3 \cdot 10^{7}$
1280	1.10^{14}	$3 \cdot 10^{9}$
1536	3.10^{16}	$2 \cdot 10^{11}$
2048	3.10^{20}	4.10^{14}

To be sure, certainly you can use very large keys, but remember your computation time will become unreasonable! Here are some predictions in bit lengths:

Year	Individual	Corporation	Government
2000	1024	1280	1538
2005	1280	1538	2048
2010	1280	1538	2048
2015	1538	2048	2048

The RSA Algorithm (cont'd)

TIMING ATTACKS ON RSA

This is similar to a burglar observing how long it takes for someone to turn the diall of a safe. It is applicable to other cryptosystems as vell.

A cryptanalyst can compute a private key by keeping track of how long it takes the computer to decipher messages. The exponent is computed bit-by-bit starting with the low-end bit.

For a given ciphertext it is possible to time how long it takes to perform modular exponentiation. Ne can therefore determine unknown bits by exploiting timing differences in responses. (This attack was implemented by Koeher in 1996.$)$

The problem is eliminated by using any of the following remedies: (a) constant exponentiation time. (b) random delay, or (c) blinding by multiplying the ciphertext with random number prior to exponentiation.

Diffie-Hellman Key Exchange

- First public-key algorithm published
- Limited to key exchange
- Dependent for its effectiveness on the difficulty of computing discrete logarithm

Diffie-Hellman Key Exchange (cont'd)

- Define a primitive root of of a prime number p as one whose powers generate all the integers from 1 to $p-1$.
- If a is a primitive root of the prime number p, then the numbers $a \bmod p, a^{2} \bmod p, \ldots, a^{p-1} \bmod p$
are distinct and consist of the integers from 1 to p 1 in some permutation.
- Not every number has a primitive root.
- For example, 2 is a primitive root of 5 , but 4 is not.

Diffie-Hellman Key Exchange (cont'd)

- For any integer b and a primitive root a of prime number p, one can find a unique exponent i such that

$$
b=a^{i} \bmod p, \text { where } 0 \leq i \leq(p-1) .
$$

- The exponent i is referred to as the discrete logarithm, or index, of b for the base $a, \bmod p$.
- This value is denoted as ind ${ }_{a, p}(b)\left(\operatorname{dlog}_{a, p}(b)\right)$.

Diffie-Hellman Key Exchange (cont'd)

Diffie-Hellman Key Exchange (cont'd)

- Example:
$q=97$ and a primitive root $a=5$ is selected.
$X_{\mathrm{A}}=36$ and $X_{\mathrm{B}}=58($ both $<97)$.
$Y_{\mathrm{A}}=5^{36}=50 \mathrm{mod} 97$ and
$Y_{\mathrm{B}}=5^{58}=44 \bmod 97$.
$K=\left(Y_{\mathrm{B}}\right)^{X_{\mathrm{A}}} \bmod 97=44^{36} \bmod 97=75 \bmod 97$.
$K=\left(Y_{\mathrm{A}}\right)^{X_{\mathrm{B}}} \bmod 97=50^{58} \bmod 97=75 \bmod 97$.
75 cannot easily be computed by the opponent.

Diffie-Hellman Key Exchange (cont'd)

- How the algorithm works

$$
\begin{aligned}
& K=\left(Y_{B}\right)^{X_{A}} \bmod q \\
& =\left(\alpha^{X_{B}} \bmod q\right)^{X_{A}} \bmod q \\
& =\left(\alpha^{X_{B}}\right)^{X_{A}} \bmod q \\
& =\alpha^{X_{B} X_{A}} \bmod q \\
& =\left(\alpha^{X_{A}}\right)^{X_{B}} \bmod q \\
& =\left(\alpha^{X_{A}} \bmod q\right)^{X_{B}} \bmod q \\
& =\left(Y_{A}\right)^{X_{B}} \bmod q
\end{aligned}
$$

Diffie-Hellman Key Exchange (cont'd)

Figure 6.17 Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange (cont'd)

- q, a, Y_{A} and Y_{B} are public.
- To attack the secrete key of user B, the opponent must compute

$$
X_{\mathrm{B}}=\operatorname{ind}_{a, q}\left(Y_{\mathrm{B}}\right) \cdot\left[Y_{\mathrm{B}}=a^{X_{\mathrm{B}}} \bmod q .\right]
$$

- The effectiveness of this algorithm therefore depends on the difficulty of solving discrete logarithm.

Diffie-Hellman Key Exchange (cont'd)

- Bucket brigade (Man-in-the-middle) attack

$-\left(\alpha^{x z} \bmod q\right)$ becomes the secret key between Alice and Trudy, while $\left(\alpha^{y z} \bmod q\right)$ becomes the secret key between Trudy and Bob.

