Midterm: Part I

Note

This is a closed-book exam. Part I contains five problems, each accounting for 10 points.

Problems

- 1. Consider the AES algorithm, where the irreducible polynomial modulus is $x^8 + x^4 + x^3 + x + 1$.
 - (a) What is the result of $(1101\ 1001) \cdot (0000\ 0110)$? Show the steps of your calculation.
 - (b) What is the value of $(0110\ 0101)^{-1}$? Show the steps of your calculation.
- 2. (a) How does three-key triple DES achieve backward compatibility with DES? Please describe all alternatives.
 - (b) Why does the encryption algorithm of AES run faster than the decryption algorithm? How is this fact useful?
- 3. (a) Why are the various modes of operation needed for block ciphers?
 - (b) What are the advantages of the Counter (CTR) Mode of Operation for symmetric block ciphers? Please give five of them.
- 4. What is a hierarchical key control (for key distribution)? How does it operate? What are its advantages?
- 5. Below is a simple authentication protocol that has been studied in the literature. It relies on a trusted third party C that shares a (distinct) secret key with each principle in the system. The key shared between C and a principle P is denoted K_P . $\{M\}_K$ denotes a message containing the plaintext M encrypted with the key K. A nonce is essentially some information that has never appeared before (at the time when the nonce is generated). Please explain why Q can be certain after step (6) that (assuming there is only one session of this protocol running) it was really P who sent the message "I am P".

(1)
$$P \rightarrow Q$$
 : "I am P "
(2) Q : generate nonce n
(3) $Q \rightarrow P$: n
(4) $P \rightarrow Q$: $\{n\}_{K_P}$
(5) $Q \rightarrow C$: $\{P, \{n\}_{K_P}\}_{K_Q}$
(6) $C \rightarrow Q$: $\{n\}_{K_Q}$

(5 bonus points) The protocol above is in fact incorrect when there can be multiple sessions running simultaneously. Can you find a problematic scenario?

Appendix

• The extended Euclid's algorithm for polynomials is as follows.

EXTENDED EUCLID(m(x), b(x)):

- 1. $[A_1(x), A_2(x), A_3(x)] \leftarrow [1, 0, m(x)]; [B_1(x), B_2(x), B_3(x)] \leftarrow [0, 1, b(x)]$
- 2. if $B_3(x) = 0$ then return $A_3(x) = \text{gcd}(m(x), b(x))$; no inverse
- 3. if $B_3(x) = 1$ then return $A_3(x) = \gcd(m(x), b(x)); B_2(x) = b^{-1}(x) \pmod{m(x)}$
- 4. Q(x) = the quotient of $A_3(x)/B_3(x)$
- 5. $[T_1(x), T_2(x), T_3(x)] \leftarrow [A_1(x) Q(x)B_1(x), A_2(x) Q(x)B_2(x), A_3(x) Q(x)B_3(x)]$
- 6. $[A_1(x), A_2(x), A_3(x)] \leftarrow [B_1(x), B_2(x), B_3(x)]$
- 7. $[B_1(x), B_2(x), B_3(x)] \leftarrow [T_1(x), T_2(x), T_3(x)]$
- $8. \quad \text{go to} \ 2$
- The Counter (CTR) Mode of Operation in picture:

