Midterm: Part I

Note

This is a closed-book exam. Part I contains five problems, each accounting for 10 points.

Problems

- 1. (a) What does it mean to say that DES has a good avalanche effect?
 - (b) How does three-key triple DES achieve backward compatibility with DES? Please describe all alternatives.
- 2. This problem concerns finite fields of the form $GF(2^3)$.
 - (a) To construct a GF(2³), one needs to choose an irreducible polynomial of degree 3 as the modulus. Is $x^3 + 1$ irreducible? Please justify your answer.
 - (b) Suppose we choose $x^3 + x^2 + 1$ as the irreducible polynomial. Please use the generator approach to produce a table of multiplication for the GF(2³) defined by $x^3 + x^2 + 1$.
- 3. Consider the AES algorithm, where the irreducible polynomial modulus is $x^8 + x^4 + x^3 + x + 1$.
 - (a) What is the result of $(0101\ 1011) \cdot (0000\ 0110)$? Show the steps of your calculation.
 - (b) What is the value of $(0110\ 0011)^{-1}$? Show the steps of your calculation.
- 4. Using AES, decryption takes a slightly longer time than encryption.
 - (a) Which operation and its inverse are most responsible for this difference? Why does the inverse takes a longer time than the original operation?
 - (b) Why is this difference not reflected in the encryption and decryption with some modes of operation?
- 5. How can an encryption algorithm be used for pseudorandom number generation? Please describe a scheme. Assuming that the 256-bit AES is used, what is the period of the generated bit stream?

Appendix

• Extended Euclid's algorithm for polynomials:

EXTENDED EUCLID(a(x), b(x)):

- 1. $[V_1(x), W_1(x), R_1(x)] \leftarrow [1, 0, a(x)]; [V_2(x), W_2(x), R_2(x)] \leftarrow [0, 1, b(x)]$
- 2. if $R_2(x) = 0$ then return $R_1(x) = \gcd(a(x), b(x))$; no inverse
- 3. if $R_2(x) = 1$ then return $R_2(x) = \gcd(a(x), b(x)); W_2(x) = b^{-1}(x) \pmod{a(x)}$
- 4. Q(x) = the quotient of $R_1(x)/R_2(x)$
- 5. [V(x), W(x), R(x)]
- $\leftarrow [V_1(x) Q(x)V_2(x), W_1(x) Q(x)W_2(x), R_1(x) Q(x)R_2(x)]$
- 6. $[V_1(x), W_1(x), R_1(x)] \leftarrow [V_2(x), W_2(x), R_2(x)]$
- 7. $[V_2(x), W_2(x), R_2(x)] \leftarrow [V(x), W(x), R(x)]$
- $8. \quad \text{go to} \ 2$
- AES encryption and decryption:

