Midterm: Part I

Note

This is a closed-book exam. Part I contains five problems, each accounting for 10 points.

Problems

1. Answer the following questions concerning basic concepts in information security.
(a) What are the four general services, aside from access control and availability, that encompass the various functions required of an information security facility? Please briefly explain.
(b) Name and describe two types of passive attack and three types of active attack.
2. Answer the following questions concerning DES.
(a) Why in DES the round function (\mathbf{F}) need not be invertible?
(b) How does three-key triple DES achieve backward compatibility with DES? Please describe all alternatives.
3. Consider the AES algorithm, where the irreducible polynomial modulus is $x^{8}+x^{4}+x^{3}+x+1$.
(a) What is the result of $(0111$ 1001 $) \cdot(00000101)$? Show the steps of your calculation.
(b) What is the value of $(01000111)^{-1}$? Show the steps of your calculation.
4. Answer the following questions concerning the various block cipher modes of operation.
(a) How do the Cipher Feedback Mode and the Output Feedback Mode compare (in terms of strengths and weaknesses)?
(b) What is the main weakness of the Counter Mode?
5. Consider pseudorandom number generation with the OFB mode of operation using 128 -bit encryption. Suppose, as an observer (not knowing the seed value), you have observed so far n different blocks $C_{1}, C_{2}, \ldots, C_{n}$ of pseudorandom bits on the output.
(a) If the next block C_{n+1} would be equal to any of the previous blocks, it must be C_{1}. Why?
(b) What is the probability that the stream of blocks will start to repeat itself from C_{n+1} ?

Please justify your answers.

Appendix

- Single round of the DES Algorithm:

- Extended Euclid's algorithm for polynomials:

EXTENDED EUCLID $(a(x), b(x))$:

1. $\left[V_{1}(x), W_{1}(x), R_{1}(x)\right] \leftarrow[1,0, a(x)] ;\left[V_{2}(x), W_{2}(x), R_{2}(x)\right] \leftarrow[0,1, b(x)]$
2. if $R_{2}(x)=0$ then return $R_{1}(x)=\operatorname{gcd}(a(x), b(x))$; no inverse
3. if $R_{2}(x)=1$ then return $R_{2}(x)=\operatorname{gcd}(a(x), b(x)) ; W_{2}(x)=b^{-1}(x) \quad(\bmod a(x))$
4. $\quad Q(x)=$ the quotient of $R_{1}(x) / R_{2}(x)$
5. $\quad[V(x), W(x), R(x)]$
$\leftarrow\left[V_{1}(x)-Q(x) V_{2}(x), W_{1}(x)-Q(x) W_{2}(x), R_{1}(x)-Q(x) R_{2}(x)\right]$
6. $\quad\left[V_{1}(x), W_{1}(x), R_{1}(x)\right] \leftarrow\left[V_{2}(x), W_{2}(x), R_{2}(x)\right]$
7. $\left[V_{2}(x), W_{2}(x), R_{2}(x)\right] \leftarrow[V(x), W(x), R(x)]$
8. goto 2

- The Cipher Feedback (CFB) Mode of Operation:

- The Output Feedback (OFB) Mode of Operation:

(a) Encryption

(b) Decryption
- The Counter (CTR) Mode of Operation:

- Pseudorandom number generation with the OFB mode:

