
Programming Languages 2012: Imperative Programming:

Data Types

(Based on [Sethi 1996])

Yih-Kuen Tsay

1 Introduction

Data in Imperative Programming

• The emphasis is on data structures with
assignable components.

• The size and layout of data structures tend to be
fixed at compile time.

• Dynamic data structures are implemented using
fixed-size cells and pointers.

• Allocation and deallocation of storage are ex-
plicit.

Types

• An object is something meaningful to an appli-
cation.

• Data representation refers to the organization of
values in a program.

• Objects in an application have corresponding
(data) representations in a program.

• Data representations in imperative languages are
built from values that can be manipulated di-
rectly by the underlying machine.

• Values held in machine locations can be classi-
fied into basic types, such as integers, characters,
reals and booleans.

• Structured types can be built up from simpler
types and are laid out using sequences of loca-
tions in the machine.

• Type expressions (or simply types) are used to
lay out values in the underlying machine and to
check that operators are applied properly within
expressions.

First-Class Values

• Basic values (values of basic types) such as inte-
gers are first-class citizens. They can

– be denoted by a name,

– be the value of an expression,

– appear on the right side of an assignment,

– be passed as parameters, etc.

• Operations on basic values are built into the lan-
guages (and implemented efficiently).

Types in Pascal

〈simple〉 ::= 〈name〉
| 〈enumeration〉
| 〈subrange〉

〈type〉 ::= 〈simple〉
| array [〈simple〉] of 〈type〉
| record 〈field list〉 end
| set of 〈simple〉
| ↑ 〈name〉

〈enumeration〉 ::= (〈name list〉)
〈subrange〉 ::= 〈constant〉 .. 〈constant〉
〈field〉 ::= 〈name list〉 : 〈type〉

2 Basic Types

Basic Types

• Enumerations

• Integers and Reals

• Booleans and Boolean Expressions

• Subranges

1

Operators of Pascal Operators of C

< <= = <> >= > in
+ − or
∗ / div mod and
not

||
&&
== ! =
> < <= >=
+ −
∗ / %
!

Enumerations

• An enumeration is a finite sequence of names
written between parentheses (in Pascal). The
declaration

type day =
(Mon, Tue,Wed, Thu, Fri, Sat, Sun);

makes day an enumeration with seven elements.

• Names like Mon are treated as constants.

• Pascal and C insist that a name appear in at
most one enumeration.

• The basic types boolean and char in Pascal are
treated as enumerations.

• The elements of an enumeration are ordered.

• Operations on enumerations (in Pascal): ord(x),
succ(x), and pred(x).

Short-Circuit Evaluation

• C and Modula-2 (Pascal’s successor) use short-
circuit evaluation for boolean operators.

• In the following C program fragment

while (i >= 0 && x != A[i]) i = i-1;

control reaches the text x != A[i] only if the
expression i >= 0 evaluates to true.

Characters and Type Conversion

• In C, characters are implicitly converted, or co-
erced, to integers.

#include <stdio.h>

main() { /* copy input to output */

int c;

c = getchar();

while (c != EOF) {

putchar(c);

c =getchar();

}

}

• Conversion between characters and integers
must be done explicitly in Pascal. Function
ord(c) maps a character c to an integer i; the
inverse operation chr(i) maps the integer i back
to the character c.

c = chr(ord(c)) i = ord(chr(i))

3 Arrays

Arrays

• An array is a data structure that holds a se-
quence of elements of the same type.

• The fundamental property of arrays is that A[i],
the ith element of array A, can be accessed
quickly, for any value i at run time.

• An array type specifies the index of the first and
last elements of the array and the type of all
elements.

• Pascal allows the array index type to be an enu-
meration or a subrange.

array [1996..2000] of real

array [(Mon, Tue,Wed, Thu, Fri)]
of integer

array [char] of token

• Do array types include array bounds?

Array Layout

• The layout of an array determines the machine
address of an element A[i] relative to the address
of the first element. Layout can occur separately
from allocation.

var A : array [low..high] of T

• Assume that each element of type T occupies w
locations. If A[low] begins at location base, then
A[low + 1] begins at base+w, A[low + 2] begins
at base + 2 ∗ w, and so on.

• A formula for the address of A[i] is best ex-
pressed as

2

i ∗ w + (base− low ∗ w)

where i ∗w has to be computed at run time, but
where (base− low ∗ w) can be precomputed.

Using Arrays
type token =

(plus,minus, · · · , number, lparen, rparen, · · ·);
var tok : array [char] of token;
The array tok is initialized by assignments like

tok[′+′] := plus; tok[′−′] := minus;

A program segment:

case ch of
′+′, ′−′, ′∗′, ′/′, ′(′, ′)′, ′;′: begin

lookahead := tok[ch];
ch := ′ ′

end;
′0′, ′1′, ′2′, ′3′, ′4′, ′5′, ′6′, ′7′, ′8′, ′9′: begin

· · ·
lookahead := number

end
end

Array of Arrays
var A : array [low1..high1] of array [low2..high2]

of T
or var A : array [low1..high1, low2..high2] of T

Row-major layout
The address of A[i, j] is

i∗rw+j∗ew+(base−low1∗rw−low2∗ew),

where rw is the width of a row A[?, low2..high2] and
ew is the width of an element A[?, ?].

Example: var M : array [1..3, 1..2] of integer

M [1, 1] M [1, 2] M [2, 1] M [2, 2] M [3, 1] M [3, 2]

� -M [1] � -M [2] � -M [3]

Array of Arrays (cont.)
var A : array [low1..high1] of array [low2..high2]

of T
or var A : array [low1..high1, low2..high2] of T

Column-major layout
The address of A[i, j] is

i∗ew+j∗cw+(base−low1∗ew−low2∗cw),

where cw is the width of a column A[low1..high1, ?]
and ew is the width of an element A[?, ?].

Array Bounds and Storage Allocation

• Array layout (computation of array bounds) in
C is done statically at compile time. Storage
allocation is usually done upon procedure entry,
unless the keyword static appears before a vari-
able declaration.

int produce() {

static char buffer[128];

char temp[128];

...

}

• Storage for the static array buffer is allocated
at compile time, while that for array temp is allo-
cated afresh each time control enters procedure
produce.

Options for computing array bounds: Static
evaluation, Evaluation upon procedure entry, and
Dynamic evaluation.

4 Records

Records: Named Fields

• Records allow variables relevant to an object to
be grouped together and treated as a unit.

• The type complex below is a record type with
two fields, re and im:

type complex = record
re : real;
im : real;

end;

• The record type complex is simply a template for
two fields re and im. Storage is allocated when
the template is applied in a variable declaration,
not when the template is described.

• A change in the order of the fields of a record
should have no effect on the meaning of a pro-
gram.

• Operations on records: selection and assignment.

3

Arrays vs. Records

arrays records

component homogeneous heterogeneous
types
component indices evaluated names known
selectors at run time at compile time

Variant Records

• Variant records have a part common to all
records of that type, and a variant part, specific
to subsets of the records. Example:

type kind = (leaf , unary, binary);
node = record

c1 : T1;
c2 : T2;
case k : kind of

leaf : ();
unary : (child : T3);
binary : (lchild, rchild : T4)

end;

c1 c2 k lchild rchild

c1 c2 k child

c1 c2 k

� -Fixed Part Tag � -Variant Part

Variant Records and Type Safety

type kind = 1..2;
t = record

case kind of
1 : (i : integer);
2 : (r : real)

end;
var x : t

An unsafe program segment:

x.r := 1.0; writeln(x.i)

5 Sets

Sets

• Pascal allows sets to be used as values. It also
provides a type constructor set of for building
set types from enumerations and subranges.

– Set Values

[], [′0′..′9′], [′a′..′z′,′ A′..′Z ′], [Mon..Sun],
etc. All set elements must be of the same
simple type.

– Set Types

The type “set of S” represents subsets of
S.

– Implementation

A set of n elements is implemented as a bit
vector of length n.

– Set Operations

x in B; A+B, A−B, A ∗B, A/B; A ≤ B,
A = B, A 6= B, A ≥ B.

Using Sets

if ch in [′+′, ′−′, ′∗′, ′/′, ′(′, ′)′, ′;′] then begin
lookahead := tok[ch];
ch := ′ ′

end
else if ch in [′0′..′9′] then begin

· · ·
lookahead := number

end

Using Sets (cont.)
Compared to

case ch of
′+′, ′−′, ′∗′, ′/′, ′(′, ′)′, ′;′: begin

lookahead := tok[ch];
ch := ′ ′;

end;
′0′, ′1′, ′2′, ′3′, ′4′, ′5′, ′6′, ′7′, ′8′, ′9′: begin

· · ·
lookahead := number

end
end

6 Pointers

Pointers

• A pointer can have a value that provides indirect
access to elements of a known type. Pointers are
used for efficiency considerations and for manip-
ulating dynamic data structures.

• Pointers are first-class values and can be used as
freely as other values. They have a fixed size,
independent of what they point to.

4

• Operations on pointers:

– dynamic allocation on the heap: new(p)

– dereferencing: p ↑
– assignment

– equality testing

– deallocation: dispose(p)

Dangling Pointers and Memory Leaks

• A dangling pointer is a pointer to storage that
is being used for another purpose; typically, the
storage has been deallocated.

• Storage that is allocated but is inaccessible is
called garbage. Programs that create garbage
are said to have memory leaks.

• Pointer assignment may result in memory leaks
and dispose may result in dangling pointers.

-q

-p

-q

�
� �

��
�PPPP

p

p := q

-q

�
� �

��
�PPPP

p

dispose(p)

7 Types

Types

• Type distinctions between values carry over to
variables and to expressions.

– Variable Bindings: A variable binding asso-
ciates a property with a variable.

∗ static binding (early binding)

∗ dynamic binding (late binding)

– Type Systems: A type system for a lan-
guage is a set of rules for associating a type
with expressions in the language.

Rules of type checking:

∗ function applications

∗ overloading

∗ coercion

∗ polymorphism

– Type Equivalence

Type Equivalence

• A variable can be assigned the value of an expres-
sion or another variable of an equivalent type.

• When are two types equivalent?

– In Pascal/Modula-2 Type equivalence was
left ambiguous in Pascal. Modula-2 defines
two types to be compatible if

1. they are the same name, or

2. they are s and t, and s = t is a type
declaration, or

3. one is a subrange of the other, or

4. both are subranges of the same basic
type.

– In C C uses structural equivalence for all
types except records, which are called struc-
tures in C. Structure types are named in C
and the name is treated as a type, equiva-
lent to itself.

Structural Equivalence

• The structural equivalence of two types is deter-
mined according to the following rules:

1. A type name is structurally equivalent to
itself.

2. Two types are structurally equivalent if
they are formed by applying the same
type constructor to structurally equivalent
types.

3. After the type declaration type n = T , the
type name n is structurally equivalent to T .

Type Checking

• The purpose of type checking is to prevent errors.
A type error occurs if a function f expects an
argument of type T , but f is applied to some a
that is not of type T .

• Questions to ask about type checking in a lan-
guage:

– Static or Dynamic

– Strong or Weak

5

Weak vs. Strong Type Checking

All Programs

Weak Safe Strong

All Programs

Safe

6

