
Programming Languages 2012: Functional Programming:
Expressions

(Based on [Sethi 1996] and [Leroy et al. 2012; OCaml])

Yih-Kuen Tsay

1 Introduction
Functional Programming

• Characteristics of pure functional programming:

– Programming without assignments. The
value of an expression depends only on the
values of its subexpressions, if any.

– Implicit storage management. Storage is al-
located as necessary by built-in operations
on data. Storage that becomes inaccessible
is automatically deallocated.

– Functions as first-class values. Functions
have the same status as any other values. A
function can be the value of an expression,
it can be passed as an argument, and it can
be put in a data structure.

• Many functional languages also include impera-
tive constructs, making them “impure.”

Computing with Expressions

• Example expressions:

2 an integer constant
x a variable (defined earlier)
logx function log applied to x
2 + 3 function + applied to 2 and 3

• Expressions can also include conditionals and
function definitions.

– if x ≥ y then x else y

– let addone n = n+ 1 in addone 3

2 A Little Language
Quilts: Values and Operations

• We will consider, as a tiny functional language,
Little Quilt for manipulating objects like the fol-
lowing:

◢◤◿◺◥◣◤◿◸◹◺◥◣◹◺◿◸◢◥◣◹◸◢◤

◤◹◤◹◤◹◢◺◢◺◢◺◹◤◹◤◹◤◺◢◺◢◺◢

• Below are the two primitive objects in Little
Quilt:

◹ ◥
They are actually square pieces whose lower left
half is invisible.

Quilts: Values and Operations (cont.)

• Quilts can be turned and sewed together.

• Quilts and the operations on them are specified
by the following rules:

1. A quilt is one of the two primitive pieces,
or

2. it is formed by turning a quilt clockwise 90◦,
or

3. it is formed by sewing a quilt to the right
of another quilt of equal height.

4. Nothing else is a quilt.

1

• Examples:

◸◢
turn−→ ◣◹ turn−→ ◤◿

turn−→ ◺◥ turn−→ ◸◢

◸ ◢◢ ◤
sew−→ ◸◢◢◤

Constants (in Little Quilt)
• Let the two primitive pieces be called a and b

respectively.

– So, we will be maniplating the quilts “sym-
bolically.”

– A layer of visualization will be added, when
we implement Little Quilt in a real func-
tional language.

• Let the two basic operations be called turn and
sew.

Expressions
• The syntax of expressions in Little Quilt:

⟨expr⟩ ::= a
| b
| (turn ⟨expr⟩)
| (sew ⟨expr⟩ ⟨expr⟩)

The outermost pair of parentheses in an expres-
sion may be discarded.

• The semantics of expressions specifies the quilt
denoted by an expression.

• Expressions will be extended by allowing func-
tions from quilts to quilts and by allowing names
for quilts.

Expressions (cont.)
no. operation quilt
1 b ◥
2 turn b ◢
3 turn (turn b) ◣
4 a ◹
5 sew (turn (turn b)) a ◣◹

....5 sew ◣◹.....

..4 a ◹

.

..

..3 turn ◣...

..2 turn ◢...

..1 b ◥

User-Defined Functions

• Frequent operations, like “unturning” and “pil-
ing”, can be programmed, but it would be con-
venient to give them names.

– let unturn x = turn (turn (turn x))

– let pile x y =
unturn (sew (turn y) (turn x))

Such expressons/declarations are called let-
expressions or let-bindings.

• Visually, pile works as follows:

◹
a

turn−→ ◿
turn a

◥
b

turn−→ ◢
turn b

sew−→

◢◿
sew (turn b) (turn a)

unturn−→
◹◥

unturn (sew (turn b) (turn a))

User-Defined Functions (cont.)

• The named operations can then be used with-
out having to think about how they are imple-
mented.

• After these declarations, unturn E, for any ex-
pression E, is equivalent to turn (turn (turn E));
similarly for pile.

◥
b

unturn−→ ◤
unturn b

◥
b

turn−→ ◢
turn b

pile−→

◤◢
pile (unturn b) (turn b)

• Once declared, a function can be used to declare
others.

2

Local Declarations

• User-defined functions may be made local to a
particular expression.

• Let-expressions allow declarations to appear
within expressions in the following form:

let ⟨declaration⟩ in ⟨expression⟩

where ⟨declaration⟩ equates a user-defined
name/function with its defining expression.

• An example:

let unturn x = turn (turn (turn x)) in
let pile x y = unturn (sew (turn y) (turn x)) in
pile (unturn b) (turn b)

User-Defined Names for Values

• Frequently-used expressions/values can also be
given names as follows.

let ⟨name⟩ = ⟨expression⟩

• They may be seen as user-defined functions with-
out parameters (a.k.a. constants).

• Examples:

– let x = turn b

– let y = sew (turn a) (turn (turn b))

User-Defined Names for Values (cont.)

• Value declarations may also be made local.

• An expression of the form

let x = E1 in E2

means: occurrences of name x in E2 represent
the value of E1. Any other name can be used
instead of x without changing the meaning of
the expression.

• The expression pile (unturn b) (turn b) can be
rewritten as
let bnw = unturn b in pile bnw (turn b)

or as

let bnw = unturn b in
let bse = turn b in
pile bnw bse

Specificatin of a Quilt

◤◢
bb

◹◺
aa

sew−→
◤◹◢◺
p

◹◺
aa

◤◢
bb

sew−→
◹◤◺◢
q

pile−→
◤◹◢◺◹◤◺◢

pile p q

let unturn x = turn (turn (turn x)) in
let pile x y = unturn (sew (turn y)(turn x)) in
let aa = pile a (turn (turn a)) in
let bb = pile (unturn b) (turn b) in
let p = sew bb aa in
let q = sew aa bb in
pile p q

CFG of Little Quilt

⟨expression⟩ ::= a | b

⟨expression⟩ ::= (turn ⟨expression⟩) |

(sew ⟨expression⟩ ⟨expression⟩)

⟨expression⟩ ::= let ⟨declaration⟩ in ⟨expression⟩

⟨declaration⟩ ::= ⟨name⟩ = ⟨expression⟩

⟨expression⟩ ::= ⟨name⟩

⟨declaration⟩ ::= ⟨name⟩ ⟨formals⟩ = ⟨expression⟩

⟨formals⟩ ::= ⟨name⟩ | ⟨name⟩ ⟨formals⟩

⟨expression⟩ ::= ⟨name⟩ ⟨actuals⟩

⟨actuals⟩ ::= ⟨expression⟩ | ⟨expression⟩ ⟨actuals⟩

3 Types
Types

• A type consists of a set of elements called values
together with a set of functions called operations.

• Types are denoted by type expressions.

• We will consider methods for defining structured
values such as products, lists, and functions.
Structured values can be used freely in func-
tional languages as basic values like integers and
strings.

• Values in a functional language take advantage
of the underlying machine, but are not tied to it.

3

• Common categories of types:

– Basic types
– Products of types
– Lists of elements
– Functions from a domain to a range

Type Expressions

⟨type-expr⟩ ::= ⟨type-name⟩

| ⟨type-expr⟩ → ⟨type-expr⟩

| ⟨type-expr⟩ ∗ ⟨type-expr⟩

| ⟨type-expr⟩ list

Basic Types

• Values
A type is basic if its values are atomic, i.e., if
the values are treated as whole elements, with
no internal structure.
For example, the boolean values in the set
{true, false} are basic values.

• Operations
Basic values have no internal structure, so the
only operation defined for all basic types is a
comparison of equality.
For example, the equality 2 = 2 is true and the
inequality 2 ̸= 2 is false.

Basic Types of ML
The predeclared basic types of ML include

boolean, int, float, char, and string.

type name values operations

boolean bool true, false =, <>, · · ·

integer int -1, 0, 2 =, <>, <, +, *,

/, mod, · · ·

real float 0., 3.14 =, <>, <, +.,

*., /., · · ·

character char 'A', 'b' =, <>, · · ·

string string "Abc" =, <>, · · ·

Products

• Values
The product A∗B of two types A and B consists
of ordered pairs written as (a, b), where a is a
value of type A and b is a value of type B.
A product of n types A1 ∗ A2 ∗ · · · ∗ An consists
of tuples written as (a1, a2, · · · , an), where ai is
a value of type Ai, for 1 ≤ i ≤ n.

• Operations
Associated with pairs are operations called pro-
jection functions to extract the first and second
elements from a pair.
They can be defined in ML as follows:
let first (x, y) = x

let second (x, y) = y

Lists

• Values
A list is a finite-length sequence of elements.
The type “A list” consists of all lists of elements,
where each element belongs to type A. For ex-
ample, int list consists of all lists of integers.
In ML, list elements are written between brack-
ets “[” and “]”, and separated by semicolons “;”.
The empty list is written as [].

• Operations

List.hd x The first or head element of list x.
List.tl x The tail of list x after

removing the first element.
a :: x Construct a list with head a and tail x.

[1; 2; 3] = 1 :: [2; 3] = 1 :: 2 :: [3] = 1 :: 2 :: 3 :: []

The cons operator :: is right associative; e.g., 1 ::
2 :: [3] is equivalent to 1 :: (2 :: [3]).

Functions

• Values
The type A → B consists of all functions from
A to B.
A function f in A → B is total if it is defined
at each element of A. A is called the domain
and B the range of f . Function f is said to map
elements of its domain to elements of its range.
A function f in A → B is partial if it need not
be defined at each element of A.

4

• Operations
A key operation associated with the set A → B
is application, which takes a function f in A → B
and an element a in A, and yields an element b
of B.
In ML, the application of f to a is written as
f a.
Parentheses do not affect the value of an expres-
sion, so f a is equivalent to f (a) and to (f a).
Application is left associative; f a b is equivalent
to (f a) b, the application of f a to b.

Types in ML

• New basic types can be defined as needed by enu-
merating their elements in a type declaration.
For example,
type direction = NE | SE | SW | NW;;
The names NE, SE, SW, and NW are called
value constructors, or simply constructors, of
type direction; they construct elements of
direction out of nothing.

• Type constructors (in order of increasing prece-
dence):

type constructor notation example
function -> infix int -> bool
product * infix int*int
list list postfix string list

• A type declaration gives a name to a type. For
example,
type intpair = int*int
makes intpair a synonym for int*int.

Quilts in ML

• A quilt is a list of rows.

• A row is a list of squares.

• A square has a texture and a direction.

• Call the textures WTriangle and BTriangle.

• Call the directions NE, SE, SW, and NW.

• This view leads to the following representation:

– type texture = WTriangle | BTriangle

– type direction = NE | SE | SW | NW

– type square = texture*direction

– type row = square list

– type quilt = row list

Quilts in ML (cont.)

◹ [[(WTriangle,NE)]]

◥ [[(BTriangle,NE)]]

◹◥ [[(WTriangle,NE); (BTriangle,NE)]]
◹◥◣◺ [[(WTriangle,NE); (BTriangle,NE)];

[(BTriangle,SW); (WTriangle,SW)]]

4 Functions
Functions Declarations

• An expression is formed by applying a function
or operation to subexpressions. Once a func-
tion is declared, it can be applied as an operator
within expressions.

• A function declaration has three parts:

1. The name of the declared function

2. The parameters of the function

3. A rule for computing a result from the pa-
rameters

• The basic syntax for function declaration is

let ⟨name⟩ ⟨formal-parameter⟩ = ⟨body⟩

Example:

let successor n = n + 1;;
val successor : int -> int = <fun>

• The syntax for function application is

⟨name⟩ ⟨actual-parameter⟩

Example: successor (2 + 3)

5

Recursive Functions

• A function f is recursive if its body contains an
application of f . More generally, a function f is
recursive if f can activate itself, possibly through
other functions.

• Examples:

let rec len x =
if x = [] then 0 else 1 + len (List.tl x)

let rec fib n =
if n = 0 || n = 1 then 1
else fib (n− 2) + fib (n− 1)

5 Expression Evaluation
Innermost Evaluation

• Under the innermost-evaluation rule, the evalu-
ation of a function application

⟨name⟩ ⟨actual-parameter⟩

proceeds as follows:

1. Evaluate the expression represented by
⟨actual-parameter⟩.

2. Substitute the result for the formal in the
function body.

3. Evaluate the body.
4. Return its value as the answer.

• Each evaluation of a function body is called an
activation of the function.

• The approach of evaluating arguments before the
function body is also referred to as call-by-value
evaluation. Call-by-value can be implemented
efficiently, so it is widely used.

• Under call-by-value, all arguments are evaluated,
whether their values are needed or not.

Selective Evaluation

• The ability to evaluate selectively some parts of
an expression and ingore others is provided by
the construct

if ⟨condition⟩ then ⟨expr1⟩ else ⟨expr2⟩

• Either ⟨expr1⟩ or ⟨expr2⟩ is evaluated, not both.

Outermost Evaluation

• Under the outermost-evaluation rule, the evalu-
ation of a function application

⟨name⟩ ⟨actual-parameter⟩

proceeds as follows:

1. Substitute the actual (without evaluating
it) for the formal in the function body.

2. Evaluate the body.
3. Return its value as the answer.

• Innermost and outermost evaluations produce
the same result if both terminate with a result.

• The distinguishing difference between the evalu-
ation methods is that actual parameters are eval-
uated as they are needed in outermost evalua-
tion; they are not evaluated before substitution.

• OCaml uses call-by-value or innermost evalua-
tion.

Short-Circuit Evaluation

• The operators && (andalso) and || (orelse) per-
form short-circuit evaluation of boolean expres-
sions, in which the right operand is evaluated
only if it has to be.

• Expression “E && F” is false if E is false; it is
true if both E and F are true. The evaluation
of “E && F” proceeds from left to right, with F
being evaluated only if E is true.

• The evaluation of “E || F” is true if E evaluates
to true. F is skipped if E is true.

• So, the evaluation of “true || F” always termi-
nates even if F leads to a nonterminating com-
putation.

• For a language using innermost evaluation, the
operator || has to be provided by the language.
It cannot be user-defined as part of a program.

6 Lexical Scope
Lexical Scope

6

• Bound occurrences of variables can be renamed
without changing the meaning of a program. For
example,
let successor x = x+ 1

let successor n = n+ 1

This renaming principle is the basis for the lex-
ical scope rule for determining the meanings of
names in programs.

• When a function declaration refers to a name
that is not a formal parameter, the value of that
name has to be determined by some context.

• Lexical scope rules use the program text sur-
rounding a function declaration to determine the
context in which nonlocal names are evaluated.
The program text is static in contrast to run-
time execution, so such rules are also called static
scope rules.

Let Bindings: Names

• The occurrence of x to the right of keyword let
in

let x = E1 in E2

is called a binding occurrence or simply binding
of x. All occurrences of x in E2 are said to be
within the scope of this binding; the scope of a
binding includes itself.

• The occurrences of x within the scope of a bind-
ing are said to be bound. A binding of a name is
said to be visible to all occurrences of the name
in the scope of the binding.

• Occurrences of x in E1 are not in the scope of
this binding of x.

Let Bindings: Names (cont.)

• Determining the scopes of the two binding oc-
currences of x in the following expression may
be challenging to a beginner:

let x = 2 in let x = x+ 1 in x ∗ x

• The value of an expression is left undisturbed if
we replace all occurrences of a variable x within
the scope of a binding of x by a fresh variable.

let x = 2 in let y = x+ 1 in y ∗ y

Let Bindings: Functions

• The occurrences of f and x to the right of let or
let rec in

let f x = E1 in E2

or

let rec f x = E1 in E2

are bindings of f and x.

• The binding of the formal parameter x is visible
only to the occurrences of x in E1.

• The binding of the function name f is visible
to the occurrences of f in E2, and the let rec
binding of f is also visible in E1.

• Example: let x = 2 in let f x = x+ 1 in f x

Simultaneous Bindings

• Mutually recursive functions require the simulta-
neous binding of more than one function name.

• In

let rec f1 x1 = E1

and f2 x2 = E2 in
E

the scope of both f1 and f2 includes E1, E2,
and E. The scopes of the formal parameters x1

and x2 are, as usual, limited to the respective
function bodies.

Simultaneous Bindings (cont.)

let rec even x =
if x=0 then true
else if x=1 then false
else odd (x-1)

and odd x =
if x=0 then false
else if x=1 then true
else even (x-1);;

val even : int -> bool = <fun>
val odd : int -> bool = <fun>

(even 2, odd 2);;
- : bool * bool = (true, false)

7

7 Type Checking
Type Checking

• Type distinctions between values carry over to
expressions.

• A type system for a language is a set of rules for
associating a type with expressions in the lan-
guage. A type system rejects an expression if it
does not associate a type with the expression.

• Wherever possible, ML infers the type of an ex-
pression. An error is reported if the type of the
expression cannot be inferred.

• At the heart of all type systems is the following
rule for function application:

If f is a function of type A → B, and
a has type A, then (f a) has type B.

Type Equivalence

• Two type expressions are structurally equivalent
if and only if they are equivalent under the fol-
lowing rules:

1. A type name is structurally equivalent to
itself.

2. Two type expressions are structurally
equivalent if they are formed by applying
the same type constructor to structurally
equivalent types.

3. After a type declaration, type n = T , the
type name n is structurally equivalent to T .

• ML uses structural equivalence of types.

Type Equivalence (cont.)

[[(WTriangle,NE)]];;
- : (texture * direction) list list =
[[(WTriangle, NE)]]

The type of this expression is structurally equiva-
lent to the type name quilt declared as follows:

type square = texture*direction;;
type row = square list;;
type quilt = row list;;

Coercion: Implicit Type Conversion

• A coercion is a conversion from one type to an-
other, inserted automatically by a programming
language.

2 * 3.14;;
Characters 4-8:
2 * 3.14;;

^^^^
Error: This expression has type float but
an expression was expected of type int

• Type conversions must be specified explicitly in
ML because the language does not coerce types.

float(2);;
- : float = 2.

Polymorphism: Parameterized Types

• For all lists, the function List.hd returns the
head or first element of a list:

List.hd [1;2;3];;
- : int = 1
List.hd ["a";"b";"c"];;
- : string = "a"

• What is the type of List.hd?

List.hd;;
- : 'a list -> 'a = <fun>

• ML uses a leading quote, as in 'a, to identify a
type parameter.

• ML is known for its support for polymorphic
functions, which can be applied to parameters
of more than one type.

8

