Functional Programming: Expressions (Based on [Sethi 1996] and [Leroy et al. 2012; OCaml])

Yih-Kuen Tsay
Department of Information Management
National Taiwan University

Functional Programming

Characteristics of pure functional programming:
, Programming without assignments.
The value of an expression depends only on the values of its subexpressions, if any.
, Implicit storage management.
Storage is allocated as necessary by built-in operations on data. Storage that becomes inaccessible is automatically deallocated.

* Functions as first-class values.

Functions have the same status as any other values. A function can be the value of an expression, it can be passed as an argument, and it can be put in a data structure.
Many functional languages also include imperative constructs, making them "impure."

Computing with Expressions

Example expressions:

2 an integer constant
$x \quad a \quad$ variable (defined earlier)
$\log x \quad$ function \log applied to x
$2+3$ function + applied to 2 and 3
Expressions can also include conditionals and function definitions.
if $x \geq y$ then x else y
let addone $n=n+1$ in addone 3

Quilts: Values and Operations

We will consider, as a tiny functional language, Little Quilt for manipulating objects like the following:

Below are the two primitive objects in Little Quilt:

They are actually square pieces whose lower left half is invisible.

Quilts：Values and Operations（cont．）

Quilts can be turned and sewed together．
Quilts and the operations on them are specified by the following rules：

1．A quilt is one of the two primitive pieces，or
2．it is formed by turning a quilt clockwise 90° ，or
3．it is formed by sewing a quilt to the right of another quilt of equal height．
4．Nothing else is a quilt．
Examples：

$$
\begin{aligned}
& \text { •・ーツ }
\end{aligned}
$$

Constants (in Little Quilt)

Let the two primitive pieces be called a and b respectively.

* So, we will be maniplating the quilts "symbolically."

A layer of visualization will be added, when we implement Little Quilt in a real functional language.
Let the two basic operations be called turn and sew.

Expressions

The syntax of expressions in Little Quilt:

$$
\begin{aligned}
\langle\text { expr }\rangle::= & a \\
\mid & b \\
& \\
& (\text { turn }\langle\text { expr }\rangle) \\
& (\text { sew }\langle\text { expr }\rangle\langle\text { expr }\rangle)
\end{aligned}
$$

The outermost pair of parentheses in an expression may be discarded.
The semantics of expressions specifies the quilt denoted by an expression.
Expressions will be extended by allowing functions from quilts to quilts and by allowing names for quilts.

Expressions (cont.)

no.	operation	quilt
1	b	$\mathbf{~}$
2	turn b	$\boldsymbol{\Delta}$
3	turn $($ turn $b)$	$\mathbf{\Delta}$
4	a	∇
5	sew $($ turn $($ turn	$b))$

User-Defined Functions

Frequent operations, like "unturning" and "piling", can be programmed, but it would be convenient to give them names.

```
let unturn x = turn (turn (turn x))
let pile x y = unturn (sew (turn y) (turn x))
```

Such expressons/declarations are called let-expressions or let-bindings.
Visually, pile works as follows:

$$
\text { unturn }(\text { sew }(\text { turn } b)(\text { turn } a))
$$

User-Defined Functions (cont.)

The named operations can then be used without having to think about how they are implemented.
After these declarations, unturn E, for any expression E, is equivalent to turn (turn (turn E)); similarly for pile.

Once declared, a function can be used to declare others.

Local Declarations

- User-defined functions may be made local to a particular expression.
Let-expressions allow declarations to appear within expressions in the following form:

$$
\text { let }\langle\text { declaration }\rangle \text { in }\langle\text { expression }\rangle
$$

where \langle declaration \rangle equates a user-defined name/function with its defining expression.

- An example:
let unturn $x=\operatorname{turn}(\operatorname{turn}(\operatorname{turn} x))$ in
let pile $x y=$ unturn $($ sew $($ turn $y)($ turn $x))$ in
pile (unturn b) (turn b)

User-Defined Names for Values

D
Frequently-used expressions/values can also be given names as follows.

$$
\text { let }\langle n a m e\rangle=\langle\text { expression }\rangle
$$

They may be seen as user-defined functions without parameters (a.k.a. constants).

Examples:
let $x=\operatorname{turn} b$
泪 let $y=\operatorname{sew}($ turn $a)(\operatorname{turn}(\operatorname{turn} b))$

User-Defined Names for Values (cont.)

Value declarations may also be made local.
An expression of the form

$$
\text { let } x=E_{1} \text { in } E_{2}
$$

means: occurrences of name x in E_{2} represent the value of E_{1}. Any other name can be used instead of x without changing the meaning of the expression.
The expression pile (unturn b) (turn b) can be rewritten as let bnw $=$ unturn b in pile bnw (turn b)
or as
let $b n w=$ unturn b in
let $b s e=\operatorname{turn} b$ in
pile bnw bse

Specificatin of a Quilt

let unturn $x=\operatorname{turn}(\operatorname{turn}(\operatorname{turn} x))$ in let pile $x y=$ unturn $($ sew $($ turn $y)($ turn $x))$ in let $a \mathrm{a}=$ pile $a($ turn $($ turn $a))$ in let $b b=$ pile (unturn $b)($ turn $b)$ in
let $p=s e w b b$ aa in
let $q=s e w$ aa $b b$ in
pile pq

CFG of Little Quilt

$$
\begin{aligned}
& \text { 〈expression〉 ::= } a \mid b \\
& \text { 〈expression〉 ::= (turn 〈expression〉)| } \\
& \text { (sew 〈expression〉 (expression〉) } \\
& \text { 〈expression〉 ::= let 〈declaration〉 in 〈expression〉 } \\
& \langle\text { declaration }\rangle::=\langle\text { name }\rangle=\langle\text { expression }\rangle \\
& \text { 〈expression〉 ::= 〈name〉 } \\
& \langle\text { declaration }\rangle::=\langle\text { name }\rangle\langle\text { formals }\rangle=\langle\text { expression }\rangle \\
& \langle\text { formals〉 }::=\langle\text { name }\rangle|\langle\text { name }\rangle\langle\text { formals }\rangle \\
& \text { 〈expression〉 ::= 〈name〉 〈actuals〉 } \\
& \text { 〈actuals〉 ::= 〈expression〉| 〈expression〉 〈actuals〉 }
\end{aligned}
$$

Types

A type consists of a set of elements called values together with a set of functions called operations.
Types are denoted by type expressions.
We will consider methods for defining structured values such as products, lists, and functions. Structured values can be used freely in functional languages as basic values like integers and strings.
Values in a functional language take advantage of the underlying machine, but are not tied to it.
Common categories of types:

- Basic types
- Products of types
- Lists of elements
- Functions from a domain to a range

Type Expressions

$$
\begin{aligned}
\langle\text { type-expr }\rangle::= & \langle\text { type-name }\rangle \\
& \mid \\
& \langle\text { type-expr }\rangle \rightarrow\langle\text { type-expr }\rangle \\
& \mid \\
& \langle\text { type-expr }\rangle *\langle\text { type-expr }\rangle \\
& \mid \text { type-expr }\rangle \text { list }
\end{aligned}
$$

Basic Types

Values
A type is basic if its values are atomic, i.e., if the values are treated as whole elements, with no internal structure. For example, the boolean values in the set $\{$ true, false $\}$ are basic values.
Operations
Basic values have no internal structure, so the only operation defined for all basic types is a comparison of equality.
For example, the equality $2=2$ is true and the inequality $2 \neq 2$
is false.

Basic Types of ML

The predeclared basic types of ML include boolean, int, float, char, and string.

type	name	values	operations
boolean	bool	true, false	$=,<>, \ldots$
integer	int	$-1,0,2$	$=,<>,<,+, *$,
			$/, \bmod , \ldots$
real	float	$0 ., 3.14$	$=,<>,<,+$,
			$* ., / ., \ldots$
character	char	'A', 'b'	$=,<>, \ldots$
string	string	"Abc"	$=,<>, \ldots$

Products

- Values

The product $A * B$ of two types A and B consists of ordered pairs written as (a, b), where a is a value of type A and b is a value of type B.
A product of n types $A_{1} * A_{2} * \cdots * A_{n}$ consists of tuples written as $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$, where a_{i} is a value of type A_{i}, for $1 \leq i \leq n$.
Operations
Associated with pairs are operations called projection functions to extract the first and second elements from a pair.
They can be defined in ML as follows:
let first $(x, y)=x$
let second $(x, y)=y$

Lists

Values
A list is a finite-length sequence of elements.
The type " A list" consists of all lists of elements, where each element belongs to type A. For example, int list consists of all lists of integers.
In ML, list elements are written between brackets "[" and "]", and separated by semicolons ";". The empty list is written as [].
Operations
List.hd x The first or head element of list x.
List.tl $x \quad$ The tail of list x after removing the first element.
$a:: x \quad$ Construct a list with head a and tail x.
$[1 ; 2 ; 3]=1::[2 ; 3]=1:: 2::[3]=1:: 2:: 3::[]$
The cons operator :: is right associative; e.g., $1:: 2::[3]$ is equivalent to 1 :: (2 :: [3]).

Functions

Values
The type $A \rightarrow B$ consists of all functions from A to B.
A function f in $A \rightarrow B$ is total if it is defined at each element of
A. A is called the domain and B the range of f. Function f is said to map elements of its domain to elements of its range.
A function f in $A \rightarrow B$ is partial if it need not be defined at each element of A.
Operations
A key operation associated with the set $A \rightarrow B$ is application, which takes a function f in $A \rightarrow B$ and an element a in A, and yields an element b of B.
In ML, the application of f to a is written as $f a$.
Parentheses do not affect the value of an expression, so $f a$ is equivalent to $f(a)$ and to $(f a)$.
Application is left associative; $f a b$ is equivalent to $(f a) b$, the application of $f a$ to b.

Types in ML

New basic types can be defined as needed by enumerating their elements in a type declaration. For example, type direction = NE | SE | SW | NW; ;
The names NE, SE, SW, and NW are called value constructors, or simply constructors, of type direction; they construct elements of direction out of nothing.
Type constructors (in order of increasing precedence):

type	constructor	notation	example
function	$->$	infix	int $->$ bool
product	$*$	infix	int*int
list	list	postfix	string list

A type declaration gives a name to a type. For example, type intpair = int*int makes intpair a synonym for int*int.

Quilts in ML

A quilt is a list of rows.
A row is a list of squares.
A square has a texture and a direction.
Call the textures WTriangle and BTriangle.
Call the directions $N E, S E, S W$, and $N W$.

- This view leads to the following representation:

```
, type texture \(=\) WTriangle | BTriangle
type direction \(=\) NE | SE | SW | NW
type square = texture*direction
type row = square list
type quilt = row list
```


Quilts in ML (cont.)

∇	[[(WTriangle, NE)]]
\checkmark	[[(BTriangle, NE)]]
1	[[(WTriangle, NE) ; (BTriangle, NE)]]
,	[[(WTriangle, NE) ; (BTriangle, NE)];
	[(BTriangle, SW) ; (WTriangle,SW)]]

Functions Declarations

An expression is formed by applying a function or operation to subexpressions. Once a function is declared, it can be applied as an operator within expressions.

- A function declaration has three parts:

1. The name of the declared function
2. The parameters of the function
3. A rule for computing a result from the parameters

The basic syntax for function declaration is

$$
\text { let }\langle\text { name }\rangle\langle\text { formal-parameter }\rangle=\langle\text { body }\rangle
$$

Example:
\# let successor $\mathrm{n}=\mathrm{n}+1$;
val successor : int -> int = <fun>
The syntax for function application is

$$
\langle\text { name }\rangle\langle\text { actual-parameter〉 }
$$

Example: successor $(2+3)$

Recursive Functions

A function f is recursive if its body contains an application of f. More generally, a function f is recursive if f can activate itself, possibly through other functions.

- Examples:
let rec len $x=$

$$
\text { if } x=[] \text { then } 0 \text { else } 1+\text { len }(\text { List.tl } x)
$$

let rec $f i b n=$
if $n=0 \| n=1$ then 1 else $f i b(n-2)+f i b(n-1)$

Innermost Evaluation

Under the innermost－evaluation rule，the evaluation of a function application

$$
\langle\text { name }\rangle\langle\text { actual-parameter〉 }
$$

proceeds as follows：
1．Evaluate the expression represented by 〈actual－parameter〉．
2．Substitute the result for the formal in the function body．
3．Evaluate the body．
4．Return its value as the answer．
Each evaluation of a function body is called an activation of the function．
The approach of evaluating arguments before the function body is also referred to as call－by－value evaluation．Call－by－value can be implemented efficiently，so it is widely used．
Under call－by－value，all arguments are evaluated，whether their values are needed or not．

Selective Evaluation

The ability to evaluate selectively some parts of an expression and ingore others is provided by the construct

$$
\text { if }\langle\text { condition }\rangle \text { then }\left\langle\text { expr } r_{1}\right\rangle \text { else }\left\langle\text { expr } r_{2}\right\rangle
$$

Either $\left\langle\right.$ expr $\left.r_{1}\right\rangle$ or $\left\langle\right.$ expr $\left.r_{2}\right\rangle$ is evaluated, not both.

Outermost Evaluation

Under the outermost-evaluation rule, the evaluation of a function application

$$
\langle\text { name }\rangle\langle\text { actual-parameter〉 }
$$

proceeds as follows:

1. Substitute the actual (without evaluating it) for the formal in the function body.
2. Evaluate the body.
3. Return its value as the answer.

- Innermost and outermost evaluations produce the same result if both terminate with a result.
The distinguishing difference between the evaluation methods is that actual parameters are evaluated as they are needed in outermost evaluation; they are not evaluated before substitution.OCaml uses call-by-value or innermost evaluation.

Short-Circuit Evaluation

The operators \&\& (andalso) and || (orelse) perform short-circuit evaluation of boolean expressions, in which the right operand is evaluated only if it has to be.
Expression " E \&\& F ' is false if E is false; it is true if both E and F are true. The evaluation of " $E \& \& F$ " proceeds from left to right, with F being evaluated only if E is true.
The evaluation of " $E \| F$ ' is true if E evaluates to true. F is skipped if E is true.
So, the evaluation of "true \|| F " always terminates even if F leads to a nonterminating computation.

- For a language using innermost evaluation, the operator || has to be provided by the language. It cannot be user-defined as part of a program.

Lexical Scope

Bound occurrences of variables can be renamed without changing the meaning of a program. For example,
let successor $x=x+1$
let successor $n=n+1$
This renaming principle is the basis for the lexical scope rule for determining the meanings of names in programs.

- When a function declaration refers to a name that is not a formal parameter, the value of that name has to be determined by some context.
- Lexical scope rules use the program text surrounding a function declaration to determine the context in which nonlocal names are evaluated. The program text is static in contrast to run-time execution, so such rules are also called static scope rules.

Let Bindings: Names

The occurrence of x to the right of keyword let in

$$
\text { let } x=E_{1} \text { in } E_{2}
$$

is called a binding occurrence or simply binding of x. All occurrences of x in E_{2} are said to be within the scope of this binding; the scope of a binding includes itself.
The occurrences of x within the scope of a binding are said to be bound. A binding of a name is said to be visible to all occurrences of the name in the scope of the binding.
Occurrences of x in E_{1} are not in the scope of this binding of x.

Let Bindings: Names (cont.)

Determining the scopes of the two binding occurrences of x in the following expression may be challenging to a beginner:

$$
\text { let } x=2 \text { in let } x=x+1 \text { in } x * x
$$

The value of an expression is left undisturbed if we replace all occurrences of a variable x within the scope of a binding of x by a fresh variable.

$$
\text { let } x=2 \text { in let } y=x+1 \text { in } y * y
$$

Let Bindings: Functions

The occurrences of f and x to the right of let or let rec in

$$
\text { let } f x=E_{1} \text { in } E_{2}
$$

or

$$
\text { let rec } f x=E_{1} \text { in } E_{2}
$$

are bindings of f and x.The binding of the formal parameter x is visible only to the occurrences of x in E_{1}.
The binding of the function name f is visible to the occurrences of f in E_{2}, and the let rec binding of f is also visible in E_{1}.
Example: let $x=2$ in let $f x=x+1$ in $f x$

Simultaneous Bindings

- Mutually recursive functions require the simultaneous binding of more than one function name.
- In
let rec $f_{1} x_{1}=E_{1}$
and $f_{2} x_{2}=E_{2}$ in
E
the scope of both f_{1} and f_{2} includes E_{1}, E_{2}, and E. The scopes of the formal parameters x_{1} and x_{2} are, as usual, limited to the respective function bodies.

Simultaneous Bindings (cont.)

```
# let rec even x =
    if x=0 then true
    else if x=1 then false
    else odd (x-1)
    and odd x =
    if x=0 then false
    else if x=1 then true
    else even (x-1);;
val even : int -> bool = <fun>
val odd : int -> bool = <fun>
# (even 2, odd 2);;
- : bool * bool = (true, false)
```


Type Checking

Type distinctions between values carry over to expressions.
A type system for a language is a set of rules for associating a type with expressions in the language. A type system rejects an expression if it does not associate a type with the expression.
Wherever possible, ML infers the type of an expression. An error is reported if the type of the expression cannot be inferred.

- At the heart of all type systems is the following rule for function application:

$$
\begin{aligned}
& \text { If } f \text { is a function of type } A \rightarrow B \text {, and a has type } A \text {, } \\
& \text { then }(f \text { a) has type } B \text {. }
\end{aligned}
$$

Type Equivalence

- Two type expressions are structurally equivalent if and only if they are equivalent under the following rules:

1. A type name is structurally equivalent to itself.
2. Two type expressions are structurally equivalent if they are formed by applying the same type constructor to structurally equivalent types.
3. After a type declaration, type $n=T$, the type name n is structurally equivalent to T.

- ML uses structural equivalence of types.

Type Equivalence (cont.)

\# [[(WTriangle,NE)]];

- : (texture * direction) list list =
[[(WTriangle, NE)]]
The type of this expression is structurally equivalent to the type name quilt declared as follows:
type square = texture*direction;
type row = square list; ;
type quilt = row list;

Coercion: Implicit Type Conversion

A coercion is a conversion from one type to another, inserted automatically by a programming language.
\# 2 * 3.14;
Characters 4-8:
2 * 3.14; ;

Error: This expression has type float but an expression was expected of type int

Type conversions must be specified explicitly in ML because the language does not coerce types.

```
# float(2);;
```

- : float = 2.

Polymorphism: Parameterized Types

For all lists, the function List.hd returns the head or first element of a list:
\# List.hd [1;2;3];

- : int = 1
\# List.hd ["a";"b";"c"];
- : string = "a"

What is the type of List.hd?
\# List.hd;

- : 'a list -> 'a = <fun>

ML uses a leading quote, as in 'a, to identify a type parameter.
ML is known for its support for polymorphic functions, which can be applied to parameters of more than one type.

