Homework Assignment \#2

Note

This assignment is due $2: 10 \mathrm{PM}$ Wednesday, October 3, 2012. Please write or type your answers on A4 (or similar size) paper. Drop your homework by the due time in Yih-Kuen Tsay's mail box on the first floor of Management College Building 2. Late submission will be penalized by 20% for each working day overdue. You may discuss the problems with others, but copying answers is strictly forbidden.

Problems

There are five problems in this assignment, each accounting for 20 points.

1. The following grammar in EBNF is motivated by declarations in C :

$$
\begin{array}{rll}
\langle\text { declaration }\rangle & ::= & \langle\text { type }\rangle\langle\text { declarator }\rangle^{\prime} ; \\
\langle\text { type }\rangle & ::= & \text { int } \mid \text { char } \\
\langle\text { declarator }\rangle & ::= & *^{\prime}\langle\text { declarator }\rangle \\
& & \langle\text { declarator }\rangle^{\prime}\left[I^{\prime} \text { number }{ }^{\prime}\right]^{\prime} \\
& & \left\langle\text { declarator }^{\prime}\left(\prime^{\prime}\langle\text { type }\rangle^{\prime}\right)^{\prime}\right. \\
& & { }^{\prime}\left({ }^{\prime}\langle\text { declarator }\rangle^{\prime}\right)^{\prime} \\
& & \text { name }
\end{array}
$$

Show that the grammar is ambiguous.
2. Rewrite the grammar in Problem 1 so that the new grammar is unambiguous and still generates the same declarations.
3. The dangling-else ambiguity arises if a grammar has the following two productions:

$$
\begin{aligned}
& S::=\text { if } E \text { then } S \\
& S::=\text { if } E \text { then } S \text { else } S
\end{aligned}
$$

Write an unambiguous grammar that generates the same conditionals and matches an else with the nearest unmatched if.
4. The grammar below generates numbers in the binary notation.

$$
\begin{array}{llll}
C & ::= & C & 0|A l| l \\
A & ::= & B & 0 \mid C l
\end{array}|\mid 1
$$

Show that the generated numbers are all multiples of 3 (i.e., divisable by 3).
5. Show that all multiples of 3 are generated by the grammar in Problem 4.

