
Programming Languages [Compiled on December 19, 2012] Fall 2012

Homework Assignment #9

Note

This assignment is due 2:10PM Wednesday, December 26, 2012. Please write or type your
answers on A4 (or similar size) paper. Drop your homework by the due time in Yih-Kuen
Tsay’s mail box on the first floor of Management College Building 2. Late submission will be
penalized by 20% for each working day overdue. You may discuss the problems with others,
but copying answers is strictly forbidden.

Problems

1. (10 points) Draw a control flow diagram for the following program fragment:

repeat
S1;
if E then

done := true
else S2

until done;

2. (20 points) We have examined in class the following program fragment in Pascal for
removing adjacent duplicates:

read(x);
while x 6=0 do begin

writeln(x);
repeat

read(next)
until next 6=x;
x := next;

end;

Please rewrite the program in C using the for statement as the only looping construct:

for (〈initialize〉; 〈test〉; 〈step〉) 〈statement〉

3. (20 points) Write a program in C, C++, or Java to implement the task described by the
following pseudocode:

loop
copy characters up to “(*”;
throw away characters until “*)” is seen;

end;

Please try to make good use of the break and continue statements. You must not use
any user-defined procedures/functions. Remember to handle the end of file.

1

4. (30 points) It is possible to test if a C compiler computes the address of an array element
according to the row-major or column-major layout (although this may be clear from the
way a multi-dimensional array is declared in C). Please design a program to accomplish
the test. (Hint: utilize “pointer arithmetic”.)

5. (20 points) As we have discussed in class, it is easy to test if the compiler of an imperative
language uses static scoping or dynamic scoping to bind a local variable (not defined in
the current procedure/function) to a declaration (outside of the procedure/function). We
may adapt the test for the interpreter/compiler of a functional language.

Please devise an OCaml program to determine which (static or dynamic) scoping rule the
OCaml interpreter adopts.

2

