
Programming Languages
Introduction

(Based on [Sethi 1996])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) Introduction Programming Languages 2012 1 / 12



What They Are

Programming languages are notations for specifying, organizing,
and reasoning about computations.

According to Stroustrup, a programming language is

a tool for instructing machines,
a means for communicating between programmers,
a vehicle for expressing high-level designs,
a notation for algorithms,
a way of expressing relationships between concepts,
a tool for experimentation, and
a means for controlling computerized devices.

Yih-Kuen Tsay (IM.NTU) Introduction Programming Languages 2012 2 / 12



Machines, Machine Language, and Assembly
Language

Programming languages were invented to make machines easier
to use.

Machine computations are low level, more about the inner
workings of the machine rather than what the computation is for.

Machine language is the native language to which a computer
responds directly.

However, programs in machine language (consisting only of 0’s
and 1’s) is unintelligible to a human.

Assembly language is a variant of machine language in which
names and symbols take the place of the actual codes for
machine operations, values, and storage locations.

Yih-Kuen Tsay (IM.NTU) Introduction Programming Languages 2012 3 / 12



Assembly Code

Program
1 : M[0] := 0
2 : read(M[1])
3 : if M[1] ≥ 0 then goto 5
4 : goto 7
5 : M[3] := M[0]−M[1]
6 : if M[3] ≥ 0 then goto 16
7 : write(M[1])
8 : read(M[2])
9 : M[3] := M[2]−M[1]

10 : if M[3] ≥ 0 then goto 12
11 : goto 14
12 : M[3] := M[1]−M[2]
13 : if M[3] ≥ 0 then goto 8
14 : M[1] := M[2] + M[0]
15 : goto 3
16 : halt

Yih-Kuen Tsay (IM.NTU) Introduction Programming Languages 2012 4 / 12



Assembly Code (cont.)

If we are allowed the following conditionals, the code can become
more readable.

if M[j ] = 0 then goto i

if M[j ] = M[k] then goto i

Program
1 : M[0] := 0
2 : read(M[1])
3 : if M[1] = 0 then goto 9
4 : write(M[1])
5 : read(M[2])
6 : if M[2] = M[1] then goto 5
7 : M[1] := M[2] + M[0]
8 : goto 3
9 : halt

Yih-Kuen Tsay (IM.NTU) Introduction Programming Languages 2012 5 / 12



Toward Higher-Level Languages

Language designers seek a balance between two goals:

making computing convenient for people
making efficient use of computing machines

Convenience comes first. Without it, efficiency is irrelevant.

Programming languages were invented to make machines easier
to use. They thrive because they make problems easier to solve.

Programming languages are designed to be both higher level and
general purpose.

A language is higher level if it is independent of the underlying
machine.
A language is general purpose if it can be applied to a wide
range of problems.

Yih-Kuen Tsay (IM.NTU) Introduction Programming Languages 2012 6 / 12



Benefits of Higher-Level Languages

Higher-level languages have replaced machine language and assembly
language in virtually all areas of programming, because they provide
benefits like the following:

Readable, familiar notations

Machine independence (portability)

Availability of program libraries

Consistency checks during implementation that can detect errors

Yih-Kuen Tsay (IM.NTU) Introduction Programming Languages 2012 7 / 12



Problems of Scale

The problems of programming are ones of scale.

Any one change to a program is easy to make.

But, the effect of a change can ripple through the program,
perhaps introducing errors or bugs into some forgotten corner.

Programming languages can help in two ways:

Their readable and compact notations reduce the likelihood of
errors.
They provide ways of organizing computations so that they can
be understood one piece at a time.

Yih-Kuen Tsay (IM.NTU) Introduction Programming Languages 2012 8 / 12



Problems of Scale (cont.)

Code inspection and program testing are two common
techniques for detecting program errors.

But as Dijkstra said, program testing can be used to show the
presence of bugs, but never to show their absence.

We must organize the computations in such a way that our
limited powers are sufficient to guarantee that the computation
will establish the desired effect.

Yih-Kuen Tsay (IM.NTU) Introduction Programming Languages 2012 9 / 12



Programming Paradigms

Imperative Programming
Imperative languages are action oriented; that is, a computation
is viewed as a sequence of actions. They include Fortran, Algol,
Pascal, C, etc.

Functional Programming
Simply put, functional programming is programming without
assignments. Functional programming languages include Lisp,
Scheme, ML, etc.

Object-Oriented Programming
Central to object-oriented programming is the concept of objects
and their classification into classes and subclasses.
Object-oriented programming languages include Smalltalk,
C++, Java, etc.

Concurrent Programming

Logic Programming

Yih-Kuen Tsay (IM.NTU) Introduction Programming Languages 2012 10 / 12



Language Implementation

There are two basic approaches to implementing a program in a
higher-level language:

Compilation
The language is brought down to the level of the machine, using
a translator called a compiler.

Interpretation
The machine is brought up to the level of the language, by
building a higher-level machine called an interpreter.

Yih-Kuen Tsay (IM.NTU) Introduction Programming Languages 2012 11 / 12



Compilation vs. Interpretation

Compilation is biased toward static properties, while
interpretation can deal with dynamic properties. They can be
compared as follows.

Compilation can be more efficient than interpretation.

Unlike a compiler, which translates the source program once
and for all, an interpreter examines the program repeatedly.

Interpretation can be more flexible than compilation.

An interpreter allows programs to be changed “on the fly” to
add features or correct errors.
It can also pinpoint an error in the source text and report it
accurately.

Yih-Kuen Tsay (IM.NTU) Introduction Programming Languages 2012 12 / 12


	What
	Why
	Programming Paradigms
	Language Implementation

