Programming Languages 2012: Functional Programming: ML

(Based on [Sethi 1996] and [Leroy et al. 2012; OCaml])

Yih-Kuen Tsay

1 Functions on Lists

Lists

- Lists are the original data structure of functional programming, just as arrays are that of imperative programming.
- A list in ML is a sequence of zero or more elements of the same type, enclosed by a pair of brackets [and] and separated by ;. So, $[1 ; 2 ; 3]$ is a list of integers.
- [] denotes the empty list.
- Structure:
- A list is either empty (i.e., equals []),
- or it has the form $a:: y$, where element a is the head of the list, and the sublist y is the tail of the list.
- For example, $[1 ; 2 ; 3] \equiv 1::[2 ; 3] \equiv 1:: 2::$ $[3] \equiv 1:: 2:: 3::[]$.

Operations on Lists

- OCaml provides the following basic functions (operations) on lists:
$\begin{array}{cl}\text { Function } & \text { Description } \\ == & \text { equality test, particularly with [] }\end{array}$
:: infix list constructor (read "cons")
List.hd return the head
List.tl return the tail
- OCaml also provides the following functions (which could have been left for the user to define):

Function	Description
$@$	append/concatenate two lists
List.rev	reverse the list
List.length	count the number of elements
List.nth	return the nth element

User-Defined Functions on Lists

- Most functions on lists consider the elements of a list one by one and behave as follows:
let rec $f x=$ if "list x is empty" then ... else "something involving head/tail of x and f "
- A function like f is said to be linear recursive if f appears only once on the right side of $=$. For example,
let rec length $x=$ if $x=[]$ then 0
else $1+$ length (List.tl x)

Precedence of Operations

The usual levels of precedence (from high to low):

```
function application
```

```
**
```

**

* / *. /. mod
* / *. /. mod
+-+. -.
+-+. -.
::
::
@ -
@ -
<<== != <>>>=>

```
<<== != <>>>=>
```


Append

We may define a function that behaves the same way as @.
let rec append $x z=$
if $x=[]$ then z
else List.hd x :: append (List.tl x) z
append $[2 ; 3 ; 4][1] \equiv[2 ; 3 ; 4 ; 1]$

Append in Action

2 Pattern Matching

Reverse

We may also define a function that behaves the same way as List.rev.

```
et rec reverse \(x z=\)
    if \(x=[]\) then \(z\)
    else reverse (List.tl \(x)\) (List.hd \(x:: z)\)
```

reverse $[2 ; 3 ; 4][1] \equiv[4 ; 3 ; 2 ; 1]$
let rev $x=$ reverse $x[]$

$$
\operatorname{rev}[1 ; 2 ; 3 ; 4] \equiv[4 ; 3 ; 2 ; 1]
$$

Reverse in Action

Patterns and Cases

- Observe that

$$
\begin{aligned}
\text { length }[] & \equiv 0 \\
\text { length }(a:: y) & \equiv 1+\text { length } y
\end{aligned}
$$

- We may define length according to the patterns of the input as follows.
let rec length $x=$ match x with
[] $\rightarrow 0$
$a:: y \rightarrow 1+$ length y
- Alternatively,
let rec length $=$ function

$$
\begin{aligned}
& {[] \rightarrow 0} \\
& a:: y \rightarrow 1+\text { length } y
\end{aligned}
$$

This construct of function permits exactly one formal parameter.

Patterns and Cases (cont.)

- Similarly,
let rec append $x z=$ match x with
[] $\rightarrow z$
$a:: y \rightarrow a::$ append $y z$
let rec reverse $x z=$

match x with

[]$\rightarrow z$
$a:: y \rightarrow$ reverse $y(a:: z)$

- Patterns on tuples can be expressed more compactly.
let first $(x, y)=x$
let $\operatorname{second}(x, y)=y$

Patterns and Cases (cont.)

- As we have seen, patterns and cases lead to more readable code.
- An underscore _ denotes a "don't-care" pattern.
let $\operatorname{first}(x, \ldots)=x$
- The same formal parameter may not be used more than once in a pattern. So, the pair ($a, a:: y$) is not a legal pattern.

3 Map and Reduce: Functions as First-Class Values

Applying Functions Across List Elements

- A filter is a function that copies a list, making useful changes to the elements as they are copied.
- The simplest one is copy:

```
# let rec copy x =
    match x with
        [] -> []
    | a::y -> a::(copy y);;
val copy : 'a list -> 'a list = <fun>
```


Applying Functions Across List Elements (cont.)

- Below is a filter function for squaring each list element:

```
# let square n = n * n;;
val square : int -> int = <fun>
# let rec copysq x =
    match x with
        [] -> []
    | a::y -> square a :: copysq y;;
val copysq : int list -> int list = <fun>
```

- We will study a function called map, which is a tool for building a filter out of an input function.

Accumulate a Result

- Below is a function for computing the sum of a list of integers:

```
# let rec sum_all = function
    [] -> 0
    | a::y -> a + sum_all y;;
val sum_all : int list -> int = <fun>
```

- And, below is a function for computing the product of a list of integers:

```
# let rec product_all = function
        [] -> 1
    | a::y -> a * product_all y;;
val product_all : int list -> int = <fun>
```

- We will study a function called reduce, which is a generalization of such accumulation functions.

Map and Reduce

- Below are the very useful map and reduce:
let rec $\operatorname{map} f x=$
match x with
[] \rightarrow []
$\mid \quad a:: y \rightarrow(f a):: \operatorname{map} f y$
let rec reduce $f x v=$ match x with
[] $\rightarrow v$
$\mid \quad a:: y \rightarrow f a($ reduce $f y v)$
- Both functions are "higher-order" functions, as they take another function as an input.
- They are supported in OCaml as List.map and List.fold_right.

The Utility of Map

- Suppose we have now defined map:

```
# let rec map f x =
    match x with
        [] -> []
    | a::y -> (f a) :: (map f y);;
val map : ('a -> 'b) -> 'a list ->
'b list = <fun>
```

- And, also the following functions:

```
# let square n = n * n; ;
val square : int -> int = <fun>
# let first (x,y) = x;;
val first : 'a * 'b -> 'a = <fun>
# let second (x,y) = y;;
val second : 'a * 'b -> 'b = <fun>
```


The Utility of Map (cont.)

- Using map to apply a function to each list element:

```
# map square [1; 2; 3];;
- : int list = [1; 4; 9]
# map first [(1,"a"); (2,"b"); (3,"c")];;
- : int list = [1; 2; 3]
# map second [(1,"a"); (2,"b"); (3,"c")];;
- : string list = ["a"; "b"; "c"]
```

- In OCaml, List.map may be used instead.

The Utility of Reducton

```
# let rec reduce f x v =
    match x with
        [] -> v
    | a::y -> f a (reduce f y v);;
val reduce : ('a -> 'b -> 'b) -> 'a list
-> 'b -> 'b = <fun>
# let add x n = String.length x + n;;
val add : string -> int -> int = <fun>
# let mult x n = String.length x * n;;
val mult : string -> int -> int = <fun>
# reduce add ["1"; "23"; "456"] 0;;
- : int = 6
# reduce mult ["1"; "23"; "456"] 1;;
- : int = 6
```

In OCaml, List.fold_right may be used instead.

Anonymous Functions

An anonymous function, a function without a name, has the form

$$
\text { fun }\langle\text { formal-parameter }\rangle \rightarrow\langle\text { body }\rangle
$$

Examples:

```
# fun x n -> String.length x + n; ;
- : string -> int -> int = <fun>
# reduce (fun x n -> String.length x + n)
    ["1"; "23"; "456"] 0;;
- : int = 6
```


4 Type Inference

Type Inference

Wherever possible, ML infers types without help from the user.

```
# 3.0 * 4;;
Characters 0-3:
    3.0 * 4;;
Error: This expression has type float but
an expression was expected of type int
# 3.0 *. 4;;
Characters 7-8:
    3.0 *. 4;;
Error: This expression has type int but
an expression was expected of type float
# 3.0 *. 4.0;;
- : float = 12.
```


Type Inference (cont.)

```
# let add x y = x + y;;
```


let add x y = x + y;;

val add : int -> int -> int = <fun>
val add : int -> int -> int = <fun>

let add x y = x +. y;;

val add : float -> float -> float = <fun>

```

\section*{Parametric Polymorphism}
- A definition of the identity function:
```


let id x = x;;

val id : 'a -> 'a = <fun>

```
- The leading quote in 'a identifies it as a type parameter.
- A polymorphic function can be applied to arguments of more than one type.
- Parametric polymorphism is a special kind of polymorphism in which type expressions are parameterized.

\section*{Parametric Polymorphism (cont.)}
```


[1; 2; 3];;

- : int list = [1; 2; 3]

["one"; "two"; "three"];;

- : string list = ["one"; "two"; "three"]

```
```


let rec len = function

 [] -> 0
 | a::y -> 1 + len y;;
 val len : 'a list -> int = <fun>

len ["one"; "two"; "three"];;

- : int = 3

len [1; 2; 3];;

- : int = 3
Parametric Polymorphism and Type Inference

```
```


let rec sum x =

```
# let rec sum x =
    match x with
        [] -> 0
    | a::y -> a + sum y;;
val sum : int list -> int = <fun>
# let rec sum = function
        [] -> 0.
    | a::y -> a +. sum y;;
val sum : float list -> float = <fun>
```


5 Types

Types

- Type declarations define types corresponding to data structures.
- Value Constructors
\# type direction = North | South | East | West; ; type direction $=$ North | South | East | West

This declaration introduces a basic type direction; the associated set of values is \{North, South, East, West\}.

- Parameterized Value Constructors

```
# type bitree = Leaf | Node of bitree*bitree;; type bitree \(=\) Leaf | Node of bitree * bitree
```

A value of type bitree is either the constant Leaf or it is constructed by applying Node to a pair of values of type bitree.

```
Types (cont.)
    \circ Leaf
    * Node (Leaf, Leaf)
     Node (Node (Leaf, Leaf), Leaf)
```



```
Node (Leaf, Node (Leaf, Leaf))
```


Operations on Constructed Values

```
# let rec leafcount = function
```


let rec leafcount = function

 Leaf -> 1
 Leaf -> 1
 | Node (l,r) -> leafcount l + leafcount r;;
 | Node (l,r) -> leafcount l + leafcount r;;
 val leafcount : bitree -> int = <fun>
val leafcount : bitree -> int = <fun>

leafcount (Node (Node (Leaf, Leaf), Leaf));;

leafcount (Node (Node (Leaf, Leaf), Leaf));;

- : int = 3
- : int = 3

let isleaf = function

let isleaf = function

 Leaf -> true
 Leaf -> true
 | Node _ -> false;;
 | Node _ -> false;;
 val isleaf : bitree -> bool = <fun>

```
val isleaf : bitree -> bool = <fun>
```


Operations on Constructed Values (cont.)

```
# let left = function
    Node (l,r) -> l;;
```

Characters 11-39:
.............function
Node (l,r) -> l..
Warning 8: this pattern-matching is not
exhaustive. Here is an example of a value
that is not matched:
Leaf
val left : bitree -> bitree = <fun>
\# let right = function
Node (l,r) -> r;

Operations on Constructed Values (cont.)

\# let rec leafcount $\mathrm{x}=$
if isleaf x then 1
else leafcount (left x) + leafcount (right x); ;
val leafcount : bitree $->$ int = <fun>
\# leafcount (Node (Node (Leaf, Leaf), Leaf));

- : int = 3

A Differentiation Function

let rec $d x E=$
if " E is a constant" then 0
else if " E is the variable x " then 1
else if " E is another variable" then 0
else if " E is the sum $E_{1}+E_{2}$ "
then $d x E_{1}+d x E_{2}$
else if " E is the product $E_{1} * E_{2}$ "
then $\left(d x E_{1}\right) * E_{2}+E_{1} *\left(d x E_{2}\right)$
A Differentiation Function (cont.)

```
type expr =
            Constant of int
    | Variable of string
    | Sum of expr*expr
    | Product of expr*expr
let zero = Constant 0
let one = Constant 1
let u = Variable "u"
let v = Variable "v"
\("(u+v) * 1 "\) is represented as "Product (Sum (u,v), one)".
```


A Differentiation Function (cont.)

```
# let rec d x f =
    match x, f with
        _, Constant _ -> zero
    | V`ariable s, Variable t ->
        if s=t then one else zero
    | x, Sum (e1,e2) -> Sum ((d x e1),(d x e2))
    | x, Product (e1,e2) ->
        let term1 = Product ((d x e1),e2) in
        let term2 = Product (e1,(d x e2)) in
        Sum (term1,term2);;
```


Polymorphic Types

\# type 'a nulist = Nil | Cons of 'a * ('a nulist); type 'a nulist $=$ Nil | Cons of 'a * 'a nulist
\# Nil; ;

- : 'a nulist = Nil
\# Cons (1, Cons (2, Nil));
- : int nulist $=$ Cons (1, Cons (2, Nil))
\# Cons ("1", Cons ("2", Nil));
- : string nulist = Cons ("1", Cons ("2", Nil))

6 Exceptions

Exceptions

Exceptions are a mechanism for handling special cases or failures that occur during the execution of a program.

```
# List.hd [];;
Exception: Failure "hd".
# exception Nomatch;;
exception Nomatch
# let rec member a x =
    if x=[] then raise Nomatch
    else if a = List.hd x then x
    else member a (List.tl x);;
val member : 'a -> 'a list -> 'a list = <fun>
# member 3 [1;2;3;1;2;3];;
- : int list = [3; 1; 2; 3]
# member 4 [1;2;3;1;2;3];;
Exception: Nomatch.
```


Exceptions with Arguments

Exceptions may be attached with one or more values.

```
# exception Nomatch of string;;
exception Nomatch of string
# let rec member a x =
    if x=[] then raise (Nomatch "member")
    else if a = List.hd x then x
    else member a (List.tl x);;
val member : 'a -> 'a list -> 'a list = <fun>
# member 4 [1;2;3;1;2;3];;
Exception: Nomatch "member".
```


Exception Handling

```
Exceptions can be caught or handled by using the following syntax:
```

```
    try \(\langle\text { expr }\rangle_{1}\) with \(\langle\) exception-name \(\rangle \rightarrow\langle e x p r\rangle_{2}\)
```

 try \(\langle\text { expr }\rangle_{1}\) with \(\langle\) exception-name \(\rangle \rightarrow\langle e x p r\rangle_{2}\)
 \# exception Oops;
\# exception Oops;
exception Oops
exception Oops
\# exception Other; ;
\# exception Other; ;
exception Other
exception Other
\# try (raise Oops) with Oops -> 0;
\# try (raise Oops) with Oops -> 0;

- : int = 0
- : int = 0
\# try (raise Other) with Oops -> 0;;
\# try (raise Other) with Oops -> 0;;
Exception: Other.

```
Exception: Other.
```


Finding Exception Handlers

Exceptions are handled dynamically.
If f calls g, g calls h, and h raises an exception, then we look for handlers along the call chain h, g, f. The first handler along the chain catches the exception.

```
# exception Neg;;
exception Neg
# let s m n =
    if m >= n then m - n
    else raise Neg;;
val s : int -> int -> int = <fun>
# s 5 10;;
Exception: Neg.
```


Finding Exception Handlers (cont.)

```
# let subtract m n =
```


let subtract m n =

 try (s m n)
 try (s m n)
 with Neg -> 0;;
 with Neg -> 0;;
 val subtract : int -> int -> int = <fun>
val subtract : int -> int -> int = <fun>

subtract 5 10;;

subtract 5 10;;

- : int = 0

```
- : int = 0
```


7 Little Quilt in ML

Little Quilt in ML

```
type texture = WTriangle | BTriangle
type direction = NE | SE | SW | NW
type square = texture * direction
type row = square list
type quilt = row list
let sqa = (WTriangle,NE)
let sqb = (BTriangle,NE)
let a = [[sqa]]
let b = [[sqb]]
Little Quilt in ML (cont.)
exception Failed
let rec sew q1 q2 =
    match q1, q2 with
        [], [] -> []
    | l::x, r::y -> (l @ r) :: (sew x y)
    | _, _ -> raise Failed
```

The sew Operation in Action

Little Quilt in ML (cont.)

```
let compose f g = fun x -> f (g x)
let rec emptyquilt = function
            [] -> true
    []::tl -> emptyquilt tl
    | _ -> false
let rec turn q =
    if emptyquilt q then []
    else (List.rev
        (List.map (compose turnsq List.hd) q))
        ::
        (turn (List.map List.tl q))
    The turn Operation in Action
```

	$\mathrm{x}=$
	[[(WTriangle, NE) ; (WTriangle, NE) ; (WTriangle, NE)];
$\checkmark \nabla$	[(BTriangle, NE) ; (WTriangle, NE) ; (WTriangle, NE)];
	[(BTriangle, NE) ; (BTriangle, NE) ; (WTriangle, NE)]]
	List.map List.hd $\mathrm{x}=$
∇	[(WTriangle, NE) ;
\checkmark	(BTriangle, NE) ;
	(BTriangle, NE)]
	List.map (compose turnsq List.hd) $\mathrm{x}=$
4	[(WTriangle, SE) ;
	(BTriangle, SE) ;
	(BTriangle, SE)]
4Δ	List.rev (List.map (compose turnsq List.hd) x) =
	[(BTriangle, SE) ; (BTriangle, SE) ; (WTriangle, SE)]

```
let showrow r =
    let encodings = List.map encode r in
    print_endline (cat encodings)
let show q = List.map showrow q
Example Quilt One
```

```
let slice =
```

let slice =
let aa = pile a (turn (turn a)) in
let aa = pile a (turn (turn a)) in
let bb = pile (unturn b) (turn b) in
let bb = pile (unturn b) (turn b) in
let p = sew bb aa in
let p = sew bb aa in
let q = sew aa bb in
let q = sew aa bb in
pile p q
pile p q
let quilt1 =
let q = sew slice slice in
sew q slice

```

\section*{Example Quilt Two}

```

let quilt2 =
let bb = pile (turn b) (unturn b) in
let ba = pile (unturn b) (turn a) in
let c_nw = sew bb ba in
let c_ne = turn c_nw in
let c_se = turn c_ne in
let c_sw = turn c_se in
let p = pile (turn a) (unturn a) in
let q = pile (turn (turn a)) a in
let top = sew (sew c_nw p) (sew q c_ne) in
let bot = sew (sew c_sw q) (sew p c_se) in
pile top bot

```

\section*{8 Some Imperative Constructs}

\section*{Arrays}
```

\# [|1;2;3|];

- : int array = [|1; 2; 3|]
\# Array.make 10 0;;
- : int array = [l0; 0; 0; 0; 0; 0; 0; 0; 0; 0I]

```
```


let a = [|1;2;3|];;

val a : int array = [|1; 2; 3|]

Array.get a 1;;

- : int = 2

a.(1);;

- : int = 2

```

\section*{Arrays (cont.)}
```


let a = [|1;2;3|];;

val a : int array = [|1; 2; 3|]

Array.set a 1 4;;

- : unit = ()

a;;

- : int array = [|1; 4; 3|]

a.(2) <- 5;;

- : unit = ()

a;;

- : int array = [|1; 4; 5|]

```

\section*{References}
```


let i = ref 0;;

val i : int ref = {contents = 0}

i;;

- : int ref = {contents = 0}

!i;;

- : int = 0

i := 1;;

- : unit = ()

!i;;

- : int = 1

i := !i + 1;;

- : unit = ()

!i;;

- : int = 2

```

\section*{The While-Do Statement}
\# let a = Array.make 10 0;
val a : int array \(=[10 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 \mid]\)
```


let i = ref 0;;

```
val i : int ref = \{contents = 0\}
\# while !i <= 9 do
    (a.(!i) <- !i; i := !i + 1)
    done; ;```

