
Object-Oriented Programming
(Based on [Sethi 1996])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) Object-Oriented Programming Programming Languages 2012 1 / 22

Decomposition and Abstraction

Decomposition
Large programs are partitioned into smaller pieces that are
implemented by one or more people.

Forms of Abstraction

Procedures
Modules
Abstract data
Objects
Object-oriented programming treats an overall system as a
collection of interacting objects.

The various forms of abstraction are supported by a technique
called information hiding.

Yih-Kuen Tsay (IM.NTU) Object-Oriented Programming Programming Languages 2012 2 / 22

Modules

The idea that data and operations go together is the basis for
modules. With modules, the groupings of variables and
procedures are explicit in the source text.

A module is a collection of declarations, typically including both
variables and procedures. We cannot create new modules or
copies of existing modules dynamically as a program runs.

The interface of a module is a subset of declarations in the
module. An implementation of the module consists of everything
else about the module.

Programming with modules:

1. Describe the roles of the modules (in general terms).
2. Design the interfaces.
3. Implement the interfaces, hiding design decisions in the private

part.

Yih-Kuen Tsay (IM.NTU) Object-Oriented Programming Programming Languages 2012 3 / 22

Classes and Objects

The term class is an abbreviation of “class of objects.”

A class corresponds (essentially) to a type.

An object is a run-time entity with data on which operations can
be performed.

Objects can be created and deleted at run time.

Yih-Kuen Tsay (IM.NTU) Object-Oriented Programming Programming Languages 2012 4 / 22

Classes and Objects (cont.)
Example (in pseudocode):
class Stack {
public:

Stack();
void push(int a);
int pop();

private:
· · ·

};
Procedures push and pop operate on private data.
The procedure Stack , with the same name as the class, is a
constructor. The constructor is called automatically when an
object of the class is created, so initialization code can be put in
the constructor.
A class can also have a destructor procedure, which is called
automatically just before the object disappears.

Yih-Kuen Tsay (IM.NTU) Object-Oriented Programming Programming Languages 2012 5 / 22

Information Hiding

An abstract specification tells us the behavior of an object
independent of its implementation; that is, an abstract
specification tells us what an object does independent of how it
works.

A concrete representation tells us how an object is implemented,
how its data is laid out inside a machine, and how this data is
manipulated by its operations.

The implementation hiding principle: design a program so that
the implementation of an object can be changed without
affecting the rest of the program.

Scope rules, which control the visibility of names, are the
primary tool for achieving implementation hiding.

Yih-Kuen Tsay (IM.NTU) Object-Oriented Programming Programming Languages 2012 6 / 22

Data Invariants

A grouping of data and operations has a local state, consisting
of the values of its variables.

A data invariant for an object is a property of its local state that
holds whenever control is not in the object.

Design an object around data invariants:

Initialization of Private Variables
Since the private data of an object is inaccessible from outside,
initialization of the data belongs with the code for the object.
Initialization is needed to set up data invariants when the object
is created.
Assignments to Public Variables
Assignments to public variables can change the local state of an
object. It is up to the user to ensure that such assignments do
not disturb the desired data invariants.

Yih-Kuen Tsay (IM.NTU) Object-Oriented Programming Programming Languages 2012 7 / 22

Structures as Classes in C++
Classes in C++ are a generalization of records, called structures
in C and C++.
A structure is traditionally a grouping of data; C++ allows both
data and functions to be structure members. Example:

struct Stack {

int top;

char elements[101];

char pop();

void push(char);

Stack() { top = 0; }

};

char Stack::pop() {

top = top - 1;

return elements[top+1];

}

void Stack::push(char c) {

top = top + 1;

elements[top] = c;

}

#include <stdio.h>

main() {

Stack s;

s.push(’!’); s.push(’@’); s.push(’#’);

printf("%c %c %c\n", s.pop(), s.pop(), s.pop());

}

Yih-Kuen Tsay (IM.NTU) Object-Oriented Programming Programming Languages 2012 8 / 22

Overloaded Function Names

The same name can be given to more than one function in a
class, provided we can tell the overloaded functions apart by
looking at the number and types of their parameters.

Constructors are functions, so they too can be overloaded.

Example:

struct Complex {

float re;

float im;

Complex(float r) { re = r; im = 0; }

Complex(float r, i) { re = r; im = i; }

};

Yih-Kuen Tsay (IM.NTU) Object-Oriented Programming Programming Languages 2012 9 / 22

Public, Private, and Protected Members

Privacy and access control in C++ are class-based. That is,
access to members is restricted through keywords in a class
declaration.

C++ has three keywords—public, private, and
protected—for controlling the accessibility of member names
in a class declaration:

Public members are accessible to outside code.
Private members are accessible to the member functions in this
class declaration. They are accessible to all objects of this class.
Protected members behave like private members, except for
derived classes. Protected members are visible through
inheritance to derived classes but not to other code.

Yih-Kuen Tsay (IM.NTU) Object-Oriented Programming Programming Languages 2012 10 / 22

Dynamic Allocation in C++

C++ objects can be created in three ways:

1. through variable declarations,
2. dynamically through new, and
3. as static objects whose lifetime is the entire life of the program.

Yih-Kuen Tsay (IM.NTU) Object-Oriented Programming Programming Languages 2012 11 / 22

Dynamic Allocation in C++ (cont.)

class Cell {

int info;

Cell *next;

Cell(int i) { info = i; next = this;}

Cell(int i, Cell *n) { info = i; next = n;}

friend class List;

};

class List {

Cell *rear;

public:

void put(int);

void push(int);

int pop();

int empty() { return rear==rear->next; }

List() { rear = new Cell(0); }

~List() { while (!empty()) pop(); }

};

Yih-Kuen Tsay (IM.NTU) Object-Oriented Programming Programming Languages 2012 12 / 22

Dynamic Allocation in C++ (cont.)

void List::push(int x) {

rear->next = new Cell(x, rear->next);

}

void List::put(int x) {

rear->info = x;

rear = rear->next = new Cell(0, rear->next);

}

int List::pop() {

if (empty()) return 0;

Cell *front = rear->next;

rear->next = front->next;

int x = front->info;

delete front;

return x;

}
Yih-Kuen Tsay (IM.NTU) Object-Oriented Programming Programming Languages 2012 13 / 22

Templates: Parameterized Types

template<class T> class Stack {

int top;

int size;

T *elements;

public:

Stack(int n) {

size = n; elements = new T[size]; top = 0;

}

~Stack() { delete elements;}

void push(T a) { top++; elements[top] = a;}

T pop() { top--; return elements[top+1]; }

};

Usage:

Stack<int> s(99);

Stack<char> t(80);
Yih-Kuen Tsay (IM.NTU) Object-Oriented Programming Programming Languages 2012 14 / 22

Implementation of a C++ Program in C

struct Stack {

int top;

char elements[101];

char pop();

void push(char);

Stack() { top = 0; }

};

char Stack::pop() {

top = top - 1;

return elements[top+1];

}

struct Stacklay {

int top;

char elements[101];

};

void StackStack(struct Stacklay *p) {

p->top = 0;

}

char Stackpop(struct Stacklay *p) {

char c;

c = p->elements[p->top];

p->top = p->top - 1;

return c;

}

Yih-Kuen Tsay (IM.NTU) Object-Oriented Programming Programming Languages 2012 15 / 22

Implementation of a C++ Program in C (cont.)

void Stack::push(char c) {

top = top + 1;

elements[top] = c;

}

#include <stdio.h>

main() {

Stack s;

s.push(’!’);

s.push(’@’);

s.push(’#’);

printf("%c %c %c\n",

s.pop(),

s.pop(),

s.pop());

}

void Stackpush(struct Stacklay *p, char c) {

p->top = p->top + 1;

p->elements[p->top] = c;

}

#include <stdio.h>

main() {

struct Stacklay s;

StackStack(&s);

Stackpush(&s, ’!’);

Stackpush(&s, ’@’);

Stackpush(&s, ’#’);

printf("%c %c %c\n",

Stackpop(&s),

Stackpop(&s),

Stackpop(&s));

}

Yih-Kuen Tsay (IM.NTU) Object-Oriented Programming Programming Languages 2012 16 / 22

In-Line Expansion

Implementation hiding can result in lots of little functions that
manipulate the data in an object.

C++ implements such functions efficiently by using in-line
expansion, which replaces a call by the function body. In-line
expansion in C++ preserves the semantics of call-by-value
parameter passing.

Suppose a public function isempty is added to class stack:

int isempty() { return top == 0;}

With in-line expansion, the following conditional statement

if (s.isempty())

expands to

if ((s.top == 0))

In-line expansion eliminates the overhead of function calls at run
time, so it encourages free use of functions. It also encourages
data hiding.

Yih-Kuen Tsay (IM.NTU) Object-Oriented Programming Programming Languages 2012 17 / 22

Base and Derived Classes

The extension of a base class is called a derived class. Example:

class B { // declaration of class B

public:

int x; // the full name is B::x

char f(); // public member function

B();

};

class D : public B { // D derived from B

int x; // D::x is added,

// B::x is inherited

int g(); // added member function

};

A member added by a derived class D can have the same name
as a member of its base class B.
B::m and D::m refer to the member m in B and D, respectively.

Yih-Kuen Tsay (IM.NTU) Object-Oriented Programming Programming Languages 2012 18 / 22

Public Base Classes

A distinguishing feature of object-oriented programming in any
language is that an object of a derived class can appear where
an object of a base class is expected. That is, a derived object
can behave like a base object.

In C++, members of a public base class retain their visibility in
the derived class. That is, a public member of the base class is a
public member of the derived class, and similarly for protected
and private members. Therefore,

an object of a derived class can appear wherever an
object of a public base class is expected.

Yih-Kuen Tsay (IM.NTU) Object-Oriented Programming Programming Languages 2012 19 / 22

Virtual Functions
Virtual functions in C++ allow a derived class to supply the
function body.
class B {

public:

virtual char f() { return ’B’;}

char g() { return ’B’;}

char testF() { return f(); }

char textG() { return g(); }

};

class D : public B {

public:

char f() { return ’D’; }

char g() { return ’D’; }

};

main() {

D d;

print d.textF(), d.testG();

}Yih-Kuen Tsay (IM.NTU) Object-Oriented Programming Programming Languages 2012 20 / 22

Private Base Classes

C++ also supports private base classes. The purpose of a private
base class is quite different from that of a public base class.

A derived class simply shares the code of the private base class.
Such code sharing is sometimes called implementation
inheritance.

All members of a private base class become private in the
derived class. Nonprivate inherited members can be made visible
by writing their full names in the derived class.

Yih-Kuen Tsay (IM.NTU) Object-Oriented Programming Programming Languages 2012 21 / 22

The Privacy Principle

Functions in a derived class cannot access the private members
of its base class.

Otherwise, the following principle would be violated:

Privacy principle: The private members of a class are
accessible only to member functions of the class.

Yih-Kuen Tsay (IM.NTU) Object-Oriented Programming Programming Languages 2012 22 / 22

	Introduction
	Information Hiding
	Constructs in C++
	Derived Classes

