
Programming Languages 2012: Imperative Programming:

Procedures

(Based on [Sethi 1996])

Yih-Kuen Tsay

1 Introduction

Procedures

• Procedures are a construct for giving a name to
a piece of code; the piece is referred to as the
procedure body.

• When the name is called, the body is executed.
Each execution of the body is called an activation
of the body.

• Two forms of procedures:

– function procedures or simply functions
Functions extend the built-in operators of
a language.

– proper procedures or simply procedures Pro-
cedures extend the built-in actions or state-
ments.

Elements of a Procedure

• A procedure declaration makes explicit the ele-
ments or parts of a procedure:

– procedure name, a name for the declared
procedure

– formal parameters, placeholders for actual
parameters

– result type, which is optional

– procedure body, consisting of local declara-
tions and a statement

• Example:

function square (x : integer) : integer;
begin

square := x ∗ x
end

Procedure Name: square
Formal Parameter: x, of type integer
Result Type: integer
Procedure Body: return the value of x ∗ x

Benefits of Procedures

• The user of a procedure needs to know what a
procedure does, not how the procedure works.

• The benefits of procedures include the following:

– Procedure abstraction. abstract away from
implementation details

– Implementation hiding. changes can be
made locally

– Modular programs. divide and manage
larger programs

– Libraries. a way to extend the language

2 Parameter-Passing Methods

Parameter-Passing Methods

• Parameter passing refers to the matching of ac-
tuals with formals when a procedure call occurs.

• Possible interpretations of a procedure call like
P (A[i]) include the following:

– Call-by-value. Pass the value of A[i].

– Call-by-reference. Pass the location of A[i].

– Call-by-value-result (copy-in/copy-out).

– Call-by-name. Pass the text A[i] itself,
while avoiding “name clashes.”

1

Call-by-Value

• Under call-by-value, a formal parameter corre-
sponds to the value of an actual parameter.
Call-by-value is the primary parameter-passing
method in C and Pascal.

• Example:

procedure muchAdo(x, y : T); var
z : T ; begin z := x; x := y; y := z;
end

• A call muchAdo(a, b) has the following effect:

x := a; { pass the value of a to x }
y := b; { pass the value of b to y }
z := x; x := y; y := z; { a and b are unchanged }

• The program segment does not change a or b,
though the values of x and y are indeed ex-
changed.

Call-by-Reference

• Under call-by-reference, a formal parameter be-
comes a synonym for the the location of an actual
parameter.

• Example:

procedure swap(var x, y : integer);
var z : integer; begin z := x; x :=
y; y := z; end

• A call swap(i, A[i]) is implemented as follows:

make the location of x the same as that
of i; make the location of y the same
as that of A[i]; z := x; x := y; y :=
z;

• If i is 2 and A[2] is 99, the effect of these state-
ments is

z := 2; i := 99; A[2] := z;

Thus, these assignments exchange the values of
i and A[2].

Call-by-Reference (cont.)

• The only parameter-passing method in C is call-
by-value; however, the effect of call-by-reference
can be achieved using pointers.

• Example:

void swapc(int *px, int *py) { int z;
z = *px; *px = *py; *py = z; }

• A call swapc(&a, &b) is implemented as follows:

px = &a; py = &b; z = *px; *px =
*py; *py = z;

These assignments exchange the values of a and
b.

Call-by-Value-Result

• Call-by-value-result is also known as copy-
in/copy-out because (a) the actuals are initially
copied into the formals and (b) the formals are
finally copied back to the actuals.

• Ada, for example, supports three kinds of pa-
rameters:

– in parameters, corresponding to value pa-
rameters.

– out parameters, corresponding to just the
copy-out phase of call-by-value-result.

– in out parameters, corresponding to either
reference parameters or value-result param-
eters, at the discretion of the implementa-
tion.

• Legal Ada programs are expected to have the
same effect under call-by-reference and copy-
in/copy-out.

By-Value-Result vs. By-Reference
Consider a contrived program fragment:

program
· · ·

procedure foo(x, y); begin i := y end;
· · ·

begin
i := 2; j := 3;
foo(i, j)

end.

2

By-Value-Result vs. By-Reference (cont.)

• Under call-by-value-result, the procedure foo
has two ways of changing the value of i:

1. directly through an assignment to i and

2. indirectly trough the copy-out of the formal
x.

• The indirect change will undo the effect of the
direct assignment.

px := &i; { save the location of actual i }
py := &j; { save the location of actual j }
x := i; { copy-in value of actual i into formal x }
y := j; { copy-in value of actual j into formal y }
i := y; { change value of i }
*px := x; { copy-out x, thereby restoring i }
*py := y;

• Call-by-reference, on the other hand, will change
the value of i.

3 Scopes of Names

Scope Rules for Names

• Names in programming languages can denote
anything, including constants, variables, types,
and procedures. A declaration of a name intro-
duces a new sense in which a name is used.

• The scope rules of a language determine which
declaration of a name x applies to an occurrence
of x in a program.

• Two kinds of scope rules:

– lexical scope rules (also known as static
scope rules)

– dynamic scope rules

Lexical Scope vs. Dynamic Scope

program L;
var n : char; { n declared in L }

procedure W ;
begin write(n) end; { occurrence of n in W }
· · ·
procedure D;
var n : char; { n declared in D }
begin n := ’D’; W end; { W called within D}

begin { L }
n := ’L’; W ; D { W called from program L }

end.

Under lexical scope, the program produces the out-
put

LL

Under dynamic scope, the program produces the
output

LD

Renaming of Locals and Lexical Scope
After renaming the local variable n in procedure D

to r,

program L;
var n : char; { n declared in L }

procedure W ;
begin write(n) end; { occurrence of n in W }
· · ·
procedure D;
var r : char; { r declared in D }
begin r := ’D’; W end; { W called within D}

begin { L }
n := ’L’; W ; D { W called from program L }

end.

The program produces (under lexical or dynamic
scope) the output

LL

The renaming principle: consistent renaming of lo-
cal names has no effect on the computation set up by
a program.

Macro Expansion and Dynamic Scope

• If a procedure body is simply copied or substi-
tuted at the point of call, we get dynamic scope.

• A macro processor does the following:

1. Actual parameters are textually substituted
for the formals.

2. The resulting procedure body is textually
substituted for the call.

• Using macro expansion for the call W ,

procedure D;
var n : char; begin n := ’D’; W end;

will become

procedure D;
var n : char; begin n := ’D’; writeln(n) end;

3

• The occurrence of n in writeln(n) is “captured”
by the declaration of n in procedure D. The
output of the macro-expanded program will be
the same as that under dynamic scope.

Call-by-Name and Lexical Scope

• Call-by-name and call-by-value were the two
parameter-passing methods in Algol 60.

• The rules for call-by-name were carefully speci-
fied to get lexical scope:

1. Actual parameters are textually substituted
for the formals. Possible name conflicts be-
tween names in the actuals and local names
in the procedure body are avoided by re-
naming the locals in the body.

2. The resulting procedure body is substituted
for the call. Possible conflicts between non-
locals in the procedure body and locals at
the point of call are avoided by renaming
the locals at the point of call.

Nested Scopes

int main(· · ·)
{

int i;
for(· · ·);
{

int c;
if(· · ·);
{

int i;
· · ·

}
· · ·

}
while(· · ·)
{

int i;
· · ·

}
· · ·

}

4 Activation Records

Activation Records

• Data needed for an activation of a procedure is
collected in a record called an activation record
or frame.

• The elements of an activation record:

Function result

Incoming parameters

Control link

Access link

Saved state
(return address etc.)

Local variables

Memory Layout for C Programs

code

global data

STACK
(local data)

↓

↑

HEAP
(dynamic data)

Activation Records for C

· · ·
· · ·

Incoming parameter 2
Incoming parameter 1

Saved state
information

(control link,
return address, etc.)

Local
variables

Temporary
storage

Outgoing parameters,
incoming for next frame

· · ·

4

5 Tail-Recursion

Tail-Recursion

• When the last statement executed in the body
of a procedure is a recursive call, the call is said
to be tail recursive.

• A procedure as a whole is tail recursive if all its
recursive calls are tail recursive.

• Tail-recursive calls can be eliminated and re-
placed by control flow within the procedure,
thereby avoiding the overhead of a call.

A Tail-Recursive Binary Search

#include <stdio.h>

int yes = 1, no = 0;

#define N 7

int X[] = { 0, 11, 22, 33, 44, 55, 66, 77 };

int T;

int search(int lo, int hi) {

int k;

if (lo > hi) return no;

k = (lo + hi) / 2;

if (T == X[k]) return yes;

else if (T < X[k]) return search(lo, k-1);

else if (T > X[k]) return search(k+1, hi);

}

int main(void) {

scanf("%d", &T);

if (search(1,N)) printf("found\n");

else printf("not found\n");

return 0;

}

A Tail-Recursive Binary Search (cont.)

result

lo: 1

hi: 7

k: 4

result

lo: 5

hi: 7

k: 6

result

lo: 5

hi: 5

k: 5
fp

result

lo: 1

hi: 7

k: 4

result

lo: 5

hi: 7

k: 6
fp

result

lo: 1

hi: 7

k: 4
fp

fp

main
starts

search
1st call

search
2nd call

search
3rd call

Eliminating Tail Recursion

#include <stdio.h>

int yes = 1, no = 0;

#define N 7

int X[] = { 0, 11, 22, 33, 44, 55, 66, 77 };

int T;

int search(int lo, int hi) {

int k;

L: if (lo > hi) return no;

k = (lo + hi) / 2;

if (T == X[k]) return yes;

else if (T < X[k]) hi = k-1;

else if (T > X[k]) lo = k+1;

goto L;

}

int main(void) {

scanf("%d", &T);

if (search(1,N)) printf("found\n");

else printf("not found\n");

return 0;

}

Eliminating Tail Recursion (cont.)

result

lo: 1

hi: 7

k: 4
fp

fp

main
starts

search
called

goto L
goto L
again

result

lo: 5

hi: 7

k: 6
fp

result

lo: 5

hi: 5

k: 5
fp

5

