
Imperative Programming: Procedures
(Based on [Sethi 1996])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Procedures Programming Languages 2012 1 / 25

Procedures

Procedures are a construct for giving a name to a piece of code;
the piece is referred to as the procedure body.

When the name is called, the body is executed. Each execution
of the body is called an activation of the body.

Two forms of procedures:

function procedures or simply functions
Functions extend the built-in operators of a language.
proper procedures or simply procedures
Procedures extend the built-in actions or statements.

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Procedures Programming Languages 2012 2 / 25

Elements of a Procedure

A procedure declaration makes explicit the elements or parts of a
procedure:

procedure name, a name for the declared procedure
formal parameters, placeholders for actual parameters
result type, which is optional
procedure body, consisting of local declarations and a statement

Example:

function square (x : integer) : integer;
begin

square := x ∗ x
end

Procedure Name: square
Formal Parameter: x , of type integer
Result Type: integer
Procedure Body: return the value of x ∗ x

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Procedures Programming Languages 2012 3 / 25

Benefits of Procedures

The user of a procedure needs to know what a procedure does,
not how the procedure works.

The benefits of procedures include the following:

Procedure abstraction.
abstract away from implementation details
Implementation hiding.
changes can be made locally
Modular programs.
divide and manage larger programs
Libraries.
a way to extend the language

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Procedures Programming Languages 2012 4 / 25

Parameter-Passing Methods

Parameter passing refers to the matching of actuals with formals
when a procedure call occurs.

Possible interpretations of a procedure call like P(A[i]) include
the following:

Call-by-value.
Pass the value of A[i].
Call-by-reference.
Pass the location of A[i].
Call-by-value-result (copy-in/copy-out).
Call-by-name.
Pass the text A[i] itself, while avoiding “name clashes.”

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Procedures Programming Languages 2012 5 / 25

Call-by-Value
Under call-by-value, a formal parameter corresponds to the value
of an actual parameter. Call-by-value is the primary
parameter-passing method in C and Pascal.
Example:

procedure muchAdo(x, y : T);
var z : T ;
begin
z := x; x := y; y := z;
end

A call muchAdo(a, b) has the following effect:

x := a; { pass the value of a to x }
y := b; { pass the value of b to y }
z := x ; x := y ; y := z ; { a and b are unchanged }
The program segment does not change a or b, though the values
of x and y are indeed exchanged.

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Procedures Programming Languages 2012 6 / 25

Call-by-Reference
Under call-by-reference, a formal parameter becomes a synonym
for the the location of an actual parameter.
Example:

procedure swap(var x, y : integer);
var z : integer;
begin
z := x; x := y; y := z;
end

A call swap(i ,A[i]) is implemented as follows:

make the location of x the same as that of i ;
make the location of y the same as that of A[i];
z := x; x := y; y := z;

If i is 2 and A[2] is 99, the effect of these statements is

z := 2; i := 99; A[2] := z;

Thus, these assignments exchange the values of i and A[2].Yih-Kuen Tsay (IM.NTU) Imperative Programming: Procedures Programming Languages 2012 7 / 25

Call-by-Reference (cont.)
The only parameter-passing method in C is call-by-value;
however, the effect of call-by-reference can be achieved using
pointers.
Example:

void swapc(int *px, int *py) {
int z;
z = *px; *px = *py; *py = z;
}

A call swapc(&a, &b) is implemented as follows:

px = &a;
py = &b;
z = *px;
*px = *py;
*py = z;

These assignments exchange the values of a and b.
Yih-Kuen Tsay (IM.NTU) Imperative Programming: Procedures Programming Languages 2012 8 / 25

Call-by-Value-Result

Call-by-value-result is also known as copy-in/copy-out because
(a) the actuals are initially copied into the formals and (b) the
formals are finally copied back to the actuals.

Ada, for example, supports three kinds of parameters:

in parameters, corresponding to value parameters.
out parameters, corresponding to just the copy-out phase of
call-by-value-result.
in out parameters, corresponding to either reference parameters
or value-result parameters, at the discretion of the
implementation.

Legal Ada programs are expected to have the same effect under
call-by-reference and copy-in/copy-out.

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Procedures Programming Languages 2012 9 / 25

By-Value-Result vs. By-Reference

Consider a contrived program fragment:

program
· · ·

procedure foo(x , y); begin i := y end;
· · ·

begin
i := 2; j := 3;
foo(i , j)

end.

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Procedures Programming Languages 2012 10 / 25

By-Value-Result vs. By-Reference (cont.)

Under call-by-value-result, the procedure foo has two ways of
changing the value of i :

1. directly through an assignment to i and
2. indirectly trough the copy-out of the formal x .

The indirect change will undo the effect of the direct assignment.

px := &i ; { save the location of actual i }
py := &j ; { save the location of actual j }
x := i ; { copy-in value of actual i into formal x }
y := j ; { copy-in value of actual j into formal y }
i := y ; { change value of i }
*px := x ; { copy-out x , thereby restoring i }
*py := y ;

Call-by-reference, on the other hand, will change the value of i .

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Procedures Programming Languages 2012 11 / 25

Scope Rules for Names

Names in programming languages can denote anything, including
constants, variables, types, and procedures. A declaration of a
name introduces a new sense in which a name is used.

The scope rules of a language determine which declaration of a
name x applies to an occurrence of x in a program.

Two kinds of scope rules:

lexical scope rules (also known as static scope rules)
dynamic scope rules

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Procedures Programming Languages 2012 12 / 25

Lexical Scope vs. Dynamic Scope

program L;
var n : char; { n declared in L }

procedure W ;
begin write(n) end; { occurrence of n in W }
· · ·
procedure D;
var n : char; { n declared in D }
begin n := ’D’; W end;{ W called within D}

begin { L }
n := ’L’; W ; D { W called from program L }

end.

Under lexical scope, the program produces the output

LL

Under dynamic scope, the program produces the output

LD

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Procedures Programming Languages 2012 13 / 25

Renaming of Locals and Lexical Scope
After renaming the local variable n in procedure D to r ,

program L;
var n : char; { n declared in L }

procedure W ;
begin write(n) end; { occurrence of n in W }
· · ·
procedure D;
var r : char; { r declared in D }
begin r := ’D’; W end; { W called within D}

begin { L }
n := ’L’; W ; D { W called from program L }

end.

The program produces (under lexical or dynamic scope) the output

LL

The renaming principle: consistent renaming of local names has no
effect on the computation set up by a program.

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Procedures Programming Languages 2012 14 / 25

Macro Expansion and Dynamic Scope

If a procedure body is simply copied or substituted at the point
of call, we get dynamic scope.
A macro processor does the following:

1. Actual parameters are textually substituted for the formals.
2. The resulting procedure body is textually substituted for the

call.

Using macro expansion for the call W ,
procedure D;
var n : char; begin n := ’D’; W end;

will become

procedure D;
var n : char; begin n := ’D’; writeln(n) end;

The occurrence of n in writeln(n) is “captured” by the
declaration of n in procedure D. The output of the
macro-expanded program will be the same as that under
dynamic scope.

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Procedures Programming Languages 2012 15 / 25

Call-by-Name and Lexical Scope

Call-by-name and call-by-value were the two parameter-passing
methods in Algol 60.

The rules for call-by-name were carefully specified to get lexical
scope:

1. Actual parameters are textually substituted for the formals.
Possible name conflicts between names in the actuals and local
names in the procedure body are avoided by renaming the locals
in the body.

2. The resulting procedure body is substituted for the call.
Possible conflicts between nonlocals in the procedure body and
locals at the point of call are avoided by renaming the locals at
the point of call.

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Procedures Programming Languages 2012 16 / 25

Nested Scopes
int main(· · ·)
{

int i ;
for(· · ·);
{

int c ;
if(· · ·);
{

int i ;
· · ·

}
· · ·

}
while(· · ·)
{

int i ;
· · ·

}
· · ·

}Yih-Kuen Tsay (IM.NTU) Imperative Programming: Procedures Programming Languages 2012 17 / 25

Activation Records

Data needed for an activation of a procedure is collected in a
record called an activation record or frame.

The elements of an activation record:

Function result

Incoming parameters

Control link

Access link

Saved state
(return address etc.)

Local variables

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Procedures Programming Languages 2012 18 / 25

Memory Layout for C Programs

code

global data

STACK
(local data)

↓

↑

HEAP
(dynamic data)

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Procedures Programming Languages 2012 19 / 25

Activation Records for C

· · ·
· · ·

Incoming parameter 2
Incoming parameter 1

Saved state
information

(control link,
return address, etc.)

Local
variables

Temporary
storage

Outgoing parameters,
incoming for next frame

· · ·
Yih-Kuen Tsay (IM.NTU) Imperative Programming: Procedures Programming Languages 2012 20 / 25

Tail-Recursion

When the last statement executed in the body of a procedure is
a recursive call, the call is said to be tail recursive.

A procedure as a whole is tail recursive if all its recursive calls
are tail recursive.

Tail-recursive calls can be eliminated and replaced by control
flow within the procedure, thereby avoiding the overhead of a
call.

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Procedures Programming Languages 2012 21 / 25

A Tail-Recursive Binary Search

#include <stdio.h>

int yes = 1, no = 0;

#define N 7

int X[] = { 0, 11, 22, 33, 44, 55, 66, 77 };

int T;

int search(int lo, int hi) {

int k;

if (lo > hi) return no;

k = (lo + hi) / 2;

if (T == X[k]) return yes;

else if (T < X[k]) return search(lo, k-1);

else if (T > X[k]) return search(k+1, hi);

}

int main(void) {

scanf("%d", &T);

if (search(1,N)) printf("found\n");

else printf("not found\n");

return 0;

}

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Procedures Programming Languages 2012 22 / 25

A Tail-Recursive Binary Search (cont.)

result

lo: 1

hi: 7

k: 4

result

lo: 5

hi: 7

k: 6

result

lo: 5

hi: 5

k: 5
fp

result

lo: 1

hi: 7

k: 4

result

lo: 5

hi: 7

k: 6
fp

result

lo: 1

hi: 7

k: 4
fp

fp

main
starts

search
1st call

search
2nd call

search
3rd call

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Procedures Programming Languages 2012 23 / 25

Eliminating Tail Recursion

#include <stdio.h>

int yes = 1, no = 0;

#define N 7

int X[] = { 0, 11, 22, 33, 44, 55, 66, 77 };

int T;

int search(int lo, int hi) {

int k;

L: if (lo > hi) return no;

k = (lo + hi) / 2;

if (T == X[k]) return yes;

else if (T < X[k]) hi = k-1;

else if (T > X[k]) lo = k+1;

goto L;

}

int main(void) {

scanf("%d", &T);

if (search(1,N)) printf("found\n");

else printf("not found\n");

return 0;

} Yih-Kuen Tsay (IM.NTU) Imperative Programming: Procedures Programming Languages 2012 24 / 25

Eliminating Tail Recursion (cont.)

result

lo: 1

hi: 7

k: 4
fp

fp

main
starts

search
called

goto L
goto L
again

result

lo: 5

hi: 7

k: 6
fp

result

lo: 5

hi: 5

k: 5
fp

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Procedures Programming Languages 2012 25 / 25

	Introduction
	Parameter-Passing Methods
	Scopes of Names
	Activation Records
	Tail-Recursion

