Programming Languages 2012: Language Description: Syntax

(Based on [Sethi 1996])

Yih-Kuen Tsay

1 Introduction

Language Description

- Clear and complete descriptions of a language are needed by *programmers*, *implementers*, and even language *designers*. Nowadays, a language is typically described by a combination of formal syntax and informal semantics.
- The *syntax* of a language specifies how programs in the language are built up; the *semantics* of the language specifies what programs mean.
- Organization of language descriptions:
 - Tutorials
 - Reference Manuals
 - Formal Definitions

2 Syntax: An Overview

The Two Layers of Syntax

The formal syntax of a programming language usually consists of two layers:

- Lexical Layer The lexical syntax of a language corresponds to the spelling of words in English. It governs the formation of *numbers*, *symbols*, *identifiers*, *keywords*, etc.
- Grammar/Syntactic Layer The syntax of a language is described by a grammar, in particular a context-free grammar. Notations for writing grammars include BNF, Extended BNF (EBNF), and syntax charts.

Notations for Expressions

• Expressions such as a + b * c have been in use for centuries and were a starting point for the design of programming languages.

• For example,

$$\frac{-b + \sqrt{b^2 - 4 * a * c}}{2 * a}$$

can be written in Fortran as

(-b + sqrt(b * * 2 - 4.0 * a * c))/(2.0 * a).

Notations for Expressions (cont.)

Programming languages use a mix of notations:

- Prefix Notation (Polish Notation): the operator is written first, followed by its operands, as in + a b.
- Postfix Notation: the operator is written last, preceded by its operands, as in *a b* +.
- Infix Notation: the operator is written between its operands, as in a + b.
- Mixfix Notation: some operations do not fit neatly into the prefix, postfix, and infix classification; one example is:

if a > b then a else b

Prefix Notation

- An expression in prefix notation is written as follows:
 - The prefix notation for a constant or variable is the constant or variable itself.
 - The application of a binary operator **op** to subexpressions E_1 and E_2 is written in prefix notation as **op** $E_1 E_2$.
 - The application of a k-ary operator \mathbf{op}^k to subexpressions E_1, E_2, \ldots, E_k is written in prefix notation as $\mathbf{op}^k E_1 E_2 \cdots E_k$.

• An advantage of prefix notation is that it is easy to decode (parse) during a left-to-right scan of an expression.

Examples:

$$- + x y$$
 (the sum of x and y)

$$- * + x y z$$
 (the product of $+ x y$ and z)

$$- * + 20\ 30\ 60\ (= *\ 50\ 60\ =\ 3000)$$

- * 20 + 30 60 (= * 20 90 = 1800)

Postfix Notation

- An expression in postfix notation is written as follows:
 - The postfix notation for a constant or variable is the constant or variable itself.
 - The application of a binary operator **op** to subexpressions E_1 and E_2 is written in postfix notation as E_1 E_2 **op**.
 - The application of a k-ary operator \mathbf{op}^k to subexpressions E_1, E_2, \ldots, E_k is written in postfix notation as $E_1 E_2 \cdots E_k \mathbf{op}^k$.
- An advantage of postfix expressions is that they can be mechanically evaluated with the help of a *stack*.

Examples:

$$-x y + (\text{the sum of } x \text{ and } y)$$

-x y + z * (the product of x y + and z)

$$-20.30 + 60 * (= 50.60 * = 3000)$$

 $-20\ 30\ 60\ +\ *\ (=20\ 90\ *\ =1800)$

Infix Notation

- In infix notation, (binary) operators appear between their operands.
- An advantage of infix notation is that it is familiar and hence easy to read.
- Additional concepts, namely *precedence* and *associativity*, needed for resolving ambiguities.

- Is
$$a + b * c$$
 equal to $a + (b * c)$, or $(a + b) * c$?
- Is $4 - 2 - 1$ equal to $(4 - 2) - 1$ or $4 - (2 - 1)$?

$$15 + 2$$
 requare $(+ 2)$ r, $01 + (2 r)$.

• *Parentheses* may be used to make explicit the intended precedence and associativity.

Infix Notation (cont.)

- Precedence
 - An operator at a higher *precedence level* takes its operands before an operator at a lower precedence level.
 - For example, assuming as usual that the operator * has higher precedence than +,

$$a + b * c = a + (b * c).$$

- Associativity
 - An operator is *left associative* if subexpressions containing multiple occurrences of the operator are grouped from left to right. For example,

$$4 - 2 - 1 = (4 - 2) - 1 = 2 - 1 = 1.$$

 An operator is *right associative* if subexpressions containing multiple occurrences of the operator are grouped from right to left. For example,

$$2^{3^4} = 2^{(3^4)} = 2^{81}.$$

3 Abstract Syntax

Abstract Syntax

- The *abstract syntax* of a language identifies the meaningful components of each construct in the language.
- The meaningful components of an expression are the operators and their operands in the expression. Their structure can be conveniently represented by a tree, where an operator and its operands are represented by a node and its children (subtrees).

• Trees showing the operator/operand structure of an expression are called *abstract syntax trees*, because they show the syntactic structure of an expression independent of the notation in which the expression was originally written.

Abstract Syntax (cont.)

An abstract syntax tree for b * b - 4 * a * c:

Abstract Syntax (cont.)

An abstract syntax tree for if a > b then a else b:

4 The Lexical Layer

Lexical Syntax

- Keywords like **if** and symbols like <= are treated as units in a programming language, just as words are treated as units in English.
- The syntax of a programming language is specified in terms of units called *tokens* or *terminals*.
- A *lexical syntax* for a language specifies the correspondence between the written representation of the language and the tokens or terminal in a grammar for the language.
 - Expression: b * b 4 * a * c
 - Token sequence: $\mathbf{name}_b * \mathbf{name}_b \mathbf{num-ber}_4 * \mathbf{name}_a * \mathbf{name}_c$
- Informal description usually suffices for specifying the lexical syntax of a language; real numbers are one possible exception.

Lexical Syntax (cont.)

binary operation	symbol	Pascal	C, C++, Java
less than	<	<	<
less than or equal to	\leq	<=	<=
equal	=	=	==
not equal	\neq	<>	! =
greater than	>	>	>
greater than or equal to	\geq	$\geq =$	>=
add	+	+	+
subtract	—	—	—
multiply	*	*	*
divide, for reals	/	/	/
divide, for integers	\mathbf{div}	div	/
remainder, for integers	\mathbf{mod}	mod	%

5 Concrete Syntax

Context-Free Grammars

- The *concrete syntax* of a language describes its written representation, including lexical details such as the placement of keywords and punctuation marks.
- Context-free grammars are a formalism for specifying concrete syntax.
- A *context-free grammar*, or simply *grammar*, has four parts:
 - A set of tokens or terminals.
 - A set of nonterminals.
 - A set of productions (production rules) for identifying the components of a construct.
 Each production has a nonterminal as its left side and a string over the sets of terminals and nonterminals as its right side.
 - A nonterminal chosen as the starting nonterminal.

Context-Free Grammars (cont.)

A CFG in Backus-Naur Form (BNF) for reals:

$\langle real-number \rangle$::=	$\langle integer-part \rangle. \langle fraction \rangle$
$\langle integer-part \rangle$::=	$\langle {\rm digit} \rangle \mid \langle {\rm integer-part} \rangle \langle {\rm digit} \rangle$
$\langle fraction \rangle$::=	$\langle {\rm digit} \rangle \mid \langle {\rm digit} \rangle \langle {\rm fraction} \rangle$
$\langle digit \rangle$::=	0 1 2 3 4 5 6 7 8 9

Parse Trees

Parse Trees (cont.)

- The productions in a grammar are rules for building strings of tokens.
- A *parse tree* shows how a string can be built:
 - Each leaf is labeled with a terminal or $\langle empty \rangle$.
 - Each nonleaf node is labeled with a nonterminal.
 - The label of a nonleaf node is the left side of some production and the labels of the children of the node, from left to right, form the right side of that production.
 - The root is labeled with the starting non-terminal.
- A parse tree *generates* the string formed by reading the terminals at its leaves from left to right.

Syntactic Ambiguity

- A grammar for a language is *syntactically ambiguous*, or simply *ambiguous*, if some string in its language has more than one parse tree.
- Programming languages can usually be described by unambiguous grammars.
- If ambiguities exist, they are resolved by establishing conventions that rule out all but one parse tree for each string.
- Example ambiguous grammar:

$$E ::= E - E \mid 0 \mid 1$$

The string 1 - 0 - 1, for instance, has two parse trees.

Syntactic Ambiguity (cont.)

 $E ::= E - E \mid 0 \mid 1$

Two parse trees for 1 - 0 - 1:

Dangling Else

- A well-known example of syntactic ambiguity is the *dangling-else* ambiguity.
- Example ambiguous grammar:

$$S$$
 ::= if E then S
S ::= if E then S else S

- The string "if E_1 then if E_2 then S_1 else S_2 " has two parse trees; the else can be matched with either if.
- The dangling-else ambiguity is typically resolved by matching an **else** with the nearest unmatched **if**.

Dangling Else (cont.)

Derivations

- A *derivation* consists of a sequence of strings, beginning with the starting nonterminal. Each successive string is obtained by replacing a non-terminal by the right side of one of its productions. A derivation ends with a string consisting entirely of terminals.
- Example:

real-number	\Rightarrow	integer-part . fraction
	\Rightarrow	integer-part $digit$. fraction
	\Rightarrow	$digit \ digit$. fraction
	\Rightarrow	2 digit . fraction
	\Rightarrow	2 1 . fraction
	\Rightarrow	2.1. digit fraction
	\Rightarrow	$2\ 1$. 8 fraction
	\Rightarrow	2 1 . 8 <i>digit</i>
	\Rightarrow	21.89

Parse Trees and Abstract Syntax Trees

- A grammar for a language is usually designed to reflect the abstract syntax.
- A well-designed grammar can make it easy to pick out the meaningful components of a construct.
- With a well-designed grammar, parse trees are similar enough to abstract syntax trees that the grammar can be used to organize a language description or a program that exploits the syntax.

A Grammar for Arithmetic Expressions

$$\begin{array}{rcl} E & ::= & E+T \mid E-T \mid T \\ T & ::= & T*F \mid T/F \mid F \\ F & ::= & {\bf number} \mid {\bf name} \mid (E) \end{array}$$

In BNF,

A Grammar for Arithmetic Expressions (cont.)

Associativity and Precedence

In an increasing order of precedence,

	operat	or assocaitivity
	:=	right associative
	+, -	left associative
	*, /	left associative
1	4 ::=	$E := A \mid E$
1	E ::=	$E+T \mid E-T \mid T$
7	Г ::=	$T * F \mid T/F \mid F$
1	7 ::=	number \mid name \mid (E)

Extended BNF (EBNF)

• Below is an EBNF version of the grammar for arithmetic expressions:

• Conventions in EBNF:

- Braces, { and }, represent zero or more repetitions.

- Brackets, [and], represent an optional construct.
- A vertical bar, |, represents a choice.
- Parentheses, (and), are used for grouping.