
Programming Languages 2012: Language Description: Syntax

(Based on [Sethi 1996])

Yih-Kuen Tsay

1 Introduction

Language Description

• Clear and complete descriptions of a language
are needed by programmers, implementers, and
even language designers. Nowadays, a language
is typically described by a combination of formal
syntax and informal semantics.

• The syntax of a language specifies how programs
in the language are built up; the semantics of the
language specifies what programs mean.

• Organization of language descriptions:

– Tutorials

– Reference Manuals

– Formal Definitions

2 Syntax: An Overview

The Two Layers of Syntax
The formal syntax of a programming language usu-

ally consists of two layers:

• Lexical Layer The lexical syntax of a language
corresponds to the spelling of words in English.
It governs the formation of numbers, symbols,
identifiers, keywords, etc.

• Grammar/Syntactic Layer The syntax of a lan-
guage is described by a grammar, in partic-
ular a context-free grammar. Notations for
writing grammars include BNF, Extended BNF
(EBNF), and syntax charts.

Notations for Expressions

• Expressions such as a+ b∗ c have been in use for
centuries and were a starting point for the design
of programming languages.

• For example,

−b +
√
b2 − 4 ∗ a ∗ c
2 ∗ a

can be written in Fortran as

(−b + sqrt(b ∗ ∗ 2− 4.0 ∗ a ∗ c))/(2.0 ∗ a).

Notations for Expressions (cont.)
Programming languages use a mix of notations:

• Prefix Notation (Polish Notation): the operator
is written first, followed by its operands, as in
+ a b.

• Postfix Notation: the operator is written last,
preceded by its operands, as in a b +.

• Infix Notation: the operator is written between
its operands, as in a + b.

• Mixfix Notation: some operations do not fit
neatly into the prefix, postfix, and infix classi-
fication; one example is:

if a > b then a else b

Prefix Notation

• An expression in prefix notation is written as
follows:

– The prefix notation for a constant or vari-
able is the constant or variable itself.

– The application of a binary operator op to
subexpressions E1 and E2 is written in pre-
fix notation as op E1 E2.

– The application of a k-ary operator opk to
subexpressions E1, E2, . . ., Ek is written in
prefix notation as opk E1 E2 · · · Ek.

1

• An advantage of prefix notation is that it is easy
to decode (parse) during a left-to-right scan of
an expression.

Examples:

– + x y (the sum of x and y)

– ∗ + x y z (the product of + x y and z)

– ∗ + 20 30 60 (= ∗ 50 60 = 3000)

– ∗ 20 + 30 60 (= ∗ 20 90 = 1800)

Postfix Notation

• An expression in postfix notation is written as
follows:

– The postfix notation for a constant or vari-
able is the constant or variable itself.

– The application of a binary operator op
to subexpressions E1 and E2 is written in
postfix notation as E1 E2 op.

– The application of a k-ary operator opk to
subexpressions E1, E2, . . ., Ek is written in
postfix notation as E1 E2 · · · Ek opk.

• An advantage of postfix expressions is that they
can be mechanically evaluated with the help of
a stack .

Examples:

– x y + (the sum of x and y)

– x y + z ∗ (the product of x y + and z)

– 20 30 + 60 ∗ (= 50 60 ∗ = 3000)

– 20 30 60 + ∗ (= 20 90 ∗ = 1800)

Infix Notation

• In infix notation, (binary) operators appear be-
tween their operands.

• An advantage of infix notation is that it is famil-
iar and hence easy to read.

• Additional concepts, namely precedence and as-
sociativity , needed for resolving ambiguities.

– Is a+ b ∗ c equal to a+ (b ∗ c), or (a+ b) ∗ c?
– Is 4−2−1 equal to (4−2)−1, or 4−(2−1)?

• Parentheses may be used to make explicit the
intended precedence and associativity.

Infix Notation (cont.)

• Precedence

– An operator at a higher precedence level
takes its operands before an operator at a
lower precedence level.

– For example, assuming as usual that the op-
erator ∗ has higher precedence than +,

a + b ∗ c = a + (b ∗ c).

• Associativity

– An operator is left associative if subexpres-
sions containing multiple occurrences of the
operator are grouped from left to right. For
example,

4− 2− 1 = (4− 2)− 1 = 2− 1 = 1.

– An operator is right associative if subex-
pressions containing multiple occurrences of
the operator are grouped from right to left.
For example,

23
4

= 2(3
4) = 281.

3 Abstract Syntax

Abstract Syntax

• The abstract syntax of a language identifies the
meaningful components of each construct in the
language.

• The meaningful components of an expression are
the operators and their operands in the expres-
sion. Their structure can be conveniently rep-
resented by a tree, where an operator and its
operands are represented by a node and its chil-
dren (subtrees).

op

Ek· · ·E2E1

• Trees showing the operator/operand structure of
an expression are called abstract syntax trees, be-
cause they show the syntactic structure of an
expression independent of the notation in which
the expression was originally written.

2

Abstract Syntax (cont.)

An abstract syntax tree for b ∗ b− 4 ∗ a ∗ c:

−

∗

c∗

a4

∗

bb

Abstract Syntax (cont.)

An abstract syntax tree for if a > b then a else b:

if-then-else

ba>

ba

4 The Lexical Layer

Lexical Syntax

• Keywords like if and symbols like <= are treated
as units in a programming language, just as
words are treated as units in English.

• The syntax of a programming language is speci-
fied in terms of units called tokens or terminals.

• A lexical syntax for a language specifies the cor-
respondence between the written representation
of the language and the tokens or terminal in a
grammar for the language.

– Expression: b * b - 4 * a * c

– Token sequence: nameb ∗ nameb − num-
ber4 ∗ namea ∗ namec

• Informal description usually suffices for specify-
ing the lexical syntax of a language; real numbers
are one possible exception.

Lexical Syntax (cont.)

binary operation symbol Pascal C, C++, Java
less than < < <
less than or equal to ≤ <= <=
equal = = ==
not equal 6= <> ! =
greater than > > >
greater than or equal to ≥ >= >=
add + + +
subtract − − −
multiply ∗ * *

divide, for reals / / /

divide, for integers div div /

remainder, for integers mod mod %

5 Concrete Syntax

Context-Free Grammars

• The concrete syntax of a language describes its
written representation, including lexical details
such as the placement of keywords and punctu-
ation marks.

• Context-free grammars are a formalism for spec-
ifying concrete syntax.

• A context-free grammar , or simply grammar, has
four parts:

– A set of tokens or terminals.

– A set of nonterminals.

– A set of productions (production rules) for
identifying the components of a construct.
Each production has a nonterminal as its
left side and a string over the sets of termi-
nals and nonterminals as its right side.

– A nonterminal chosen as the starting non-
terminal.

Context-Free Grammars (cont.)
A CFG in Backus-Naur Form (BNF) for reals:

〈real-number〉 ::= 〈integer-part〉.〈fraction〉

〈integer-part〉 ::= 〈digit〉 | 〈integer-part〉〈digit〉

〈fraction〉 ::= 〈digit〉 | 〈digit〉〈fraction〉

〈digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

3

Parse Trees

real-number

fraction

fraction

digit

4

digit

1·

integer-part

digit

3

Parse Trees (cont.)

• The productions in a grammar are rules for
building strings of tokens.

• A parse tree shows how a string can be built:

– Each leaf is labeled with a terminal or
〈empty〉.

– Each nonleaf node is labeled with a nonter-
minal.

– The label of a nonleaf node is the left side
of some production and the labels of the
children of the node, from left to right, form
the right side of that production.

– The root is labeled with the starting non-
terminal.

• A parse tree generates the string formed by read-
ing the terminals at its leaves from left to right.

Syntactic Ambiguity

• A grammar for a language is syntactically am-
biguous, or simply ambiguous, if some string in
its language has more than one parse tree.

• Programming languages can usually be de-
scribed by unambiguous grammars.

• If ambiguities exist, they are resolved by estab-
lishing conventions that rule out all but one parse
tree for each string.

• Example ambiguous grammar:

E ::= E − E | 0 | 1

The string 1− 0− 1, for instance, has two parse
trees.

Syntactic Ambiguity (cont.)

E ::= E − E | 0 | 1

Two parse trees for 1− 0− 1:

E

E

1

−E

E

0

−E

1

E

E

E

1

−E

0

−E

1

Dangling Else

• A well-known example of syntactic ambiguity is
the dangling-else ambiguity.

• Example ambiguous grammar:

S ::= if E then S
S ::= if E then S else S

• The string “if E1 then if E2 then S1 else S2

” has two parse trees; the else can be matched
with either if.

• The dangling-else ambiguity is typically resolved
by matching an else with the nearest unmatched
if.

Dangling Else (cont.)

S

S

S2elseS1thenE2ifthenE1if

S

S2else

S

S1thenE2ifthenE1if

4

Derivations

• A derivation consists of a sequence of strings,
beginning with the starting nonterminal. Each
successive string is obtained by replacing a non-
terminal by the right side of one of its produc-
tions. A derivation ends with a string consisting
entirely of terminals.

• Example:

real-number ⇒ integer-part . fraction
⇒ integer-part digit . fraction
⇒ digit digit . fraction
⇒ 2 digit . fraction
⇒ 2 1 . fraction
⇒ 2 1 . digit fraction
⇒ 2 1 . 8 fraction
⇒ 2 1 . 8 digit
⇒ 2 1 . 8 9

Parse Trees and Abstract Syntax Trees

• A grammar for a language is usually designed to
reflect the abstract syntax.

• A well-designed grammar can make it easy to
pick out the meaningful components of a con-
struct.

• With a well-designed grammar, parse trees are
similar enough to abstract syntax trees that the
grammar can be used to organize a language de-
scription or a program that exploits the syntax.

A Grammar for Arithmetic Expressions

E ::= E + T | E − T | T
T ::= T ∗ F | T/F | F
F ::= number | name | (E)

In BNF,

〈experssion〉 ::= 〈experssion〉+ 〈term〉
| 〈experssion〉 − 〈term〉
| 〈term〉

〈term〉 ::= 〈term〉 ∗ 〈factor〉
| 〈term〉/〈factor〉
| 〈factor〉

〈factor〉 ::= number | name | (〈experssion〉)

A Grammar for Arithmetic Expressions
(cont.)

E

T

F

number3∗

T

F

number2∗

T

F

number4−

E

T

F

number7∗

T

F

number7

Associativity and Precedence
In an increasing order of precedence,

operator assocaitivity
:= right associative
+, − left associative
∗, / left associative

A ::= E := A | E
E ::= E + T | E − T | T
T ::= T ∗ F | T/F | F
F ::= number | name | (E)

Extended BNF (EBNF)

• Below is an EBNF version of the grammar for
arithmetic expressions:

〈expression〉 ::= 〈term〉 {(‘+’ | ‘−’) 〈term〉}
〈term〉 ::= 〈factor〉 {(‘∗’ | ‘/’) 〈factor〉}
〈factor〉 ::= ‘(’ 〈expression〉 ‘)’ | name | number

• Conventions in EBNF:

– Braces, { and }, represent zero or more rep-
etitions.

– Brackets, [and], represent an optional con-
struct.

– A vertical bar, |, represents a choice.

– Parentheses, (and), are used for grouping.

5

