
Language Description: Syntax
(Based on [Sethi 1996])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) Language Description: Syntax Programming Languages 2012 1 / 28

Language Description

Clear and complete descriptions of a language are needed by
programmers, implementers, and even language designers.
Nowadays, a language is typically described by a combination of
formal syntax and informal semantics.

The syntax of a language specifies how programs in the
language are built up; the semantics of the language specifies
what programs mean.

Organization of language descriptions:

Tutorials
Reference Manuals
Formal Definitions

Yih-Kuen Tsay (IM.NTU) Language Description: Syntax Programming Languages 2012 2 / 28

The Two Layers of Syntax

The formal syntax of a programming language usually consists of two
layers:

Lexical Layer
The lexical syntax of a language corresponds to the spelling of
words in English. It governs the formation of numbers, symbols,
identifiers, keywords, etc.

Grammar/Syntactic Layer
The syntax of a language is described by a grammar, in particular
a context-free grammar. Notations for writing grammars include
BNF, Extended BNF (EBNF), and syntax charts.

Yih-Kuen Tsay (IM.NTU) Language Description: Syntax Programming Languages 2012 3 / 28

Notations for Expressions

Expressions such as a + b ∗ c have been in use for centuries and
were a starting point for the design of programming languages.

For example,
−b +

√
b2 − 4 ∗ a ∗ c

2 ∗ a

can be written in Fortran as

(−b + sqrt(b ∗ ∗ 2− 4.0 ∗ a ∗ c))/(2.0 ∗ a).

Yih-Kuen Tsay (IM.NTU) Language Description: Syntax Programming Languages 2012 4 / 28

Notations for Expressions (cont.)

Programming languages use a mix of notations:

Prefix Notation (Polish Notation): the operator is written first,
followed by its operands, as in + a b.

Postfix Notation: the operator is written last, preceded by its
operands, as in a b +.

Infix Notation: the operator is written between its operands, as
in a + b.

Mixfix Notation: some operations do not fit neatly into the
prefix, postfix, and infix classification; one example is:

if a > b then a else b

Yih-Kuen Tsay (IM.NTU) Language Description: Syntax Programming Languages 2012 5 / 28

Prefix Notation

An expression in prefix notation is written as follows:

The prefix notation for a constant or variable is the constant or
variable itself.
The application of a binary operator op to subexpressions E1

and E2 is written in prefix notation as op E1 E2.
The application of a k-ary operator opk to subexpressions E1,
E2, . . ., Ek is written in prefix notation as opk E1 E2 · · · Ek .

An advantage of prefix notation is that it is easy to decode
(parse) during a left-to-right scan of an expression.
Examples:

+ x y (the sum of x and y)
∗ + x y z (the product of + x y and z)
∗ + 20 30 60 (= ∗ 50 60 = 3000)
∗ 20 + 30 60 (= ∗ 20 90 = 1800)

Yih-Kuen Tsay (IM.NTU) Language Description: Syntax Programming Languages 2012 6 / 28

Postfix Notation

An expression in postfix notation is written as follows:

The postfix notation for a constant or variable is the constant
or variable itself.
The application of a binary operator op to subexpressions E1

and E2 is written in postfix notation as E1 E2 op.
The application of a k-ary operator opk to subexpressions E1,
E2, . . ., Ek is written in postfix notation as E1 E2 · · · Ek opk .

An advantage of postfix expressions is that they can be
mechanically evaluated with the help of a stack.
Examples:

x y + (the sum of x and y)
x y + z ∗ (the product of x y + and z)
20 30 + 60 ∗ (= 50 60 ∗ = 3000)
20 30 60 + ∗ (= 20 90 ∗ = 1800)

Yih-Kuen Tsay (IM.NTU) Language Description: Syntax Programming Languages 2012 7 / 28

Infix Notation

In infix notation, (binary) operators appear between their
operands.

An advantage of infix notation is that it is familiar and hence
easy to read.

Additional concepts, namely precedence and associativity,
needed for resolving ambiguities.

Is a + b ∗ c equal to a + (b ∗ c), or (a + b) ∗ c?
Is 4− 2− 1 equal to (4− 2)− 1, or 4− (2− 1)?

Parentheses may be used to make explicit the intended
precedence and associativity.

Yih-Kuen Tsay (IM.NTU) Language Description: Syntax Programming Languages 2012 8 / 28

Infix Notation (cont.)
Precedence

An operator at a higher precedence level takes its operands
before an operator at a lower precedence level.
For example, assuming as usual that the operator ∗ has higher
precedence than +,

a + b ∗ c = a + (b ∗ c).

Associativity
An operator is left associative if subexpressions containing
multiple occurrences of the operator are grouped from left to
right. For example,

4− 2− 1 = (4− 2)− 1 = 2− 1 = 1.

An operator is right associative if subexpressions containing
multiple occurrences of the operator are grouped from right to
left. For example,

23
4

= 2(3
4) = 281.

Yih-Kuen Tsay (IM.NTU) Language Description: Syntax Programming Languages 2012 9 / 28

Abstract Syntax
The abstract syntax of a language identifies the meaningful
components of each construct in the language.
The meaningful components of an expression are the operators
and their operands in the expression. Their structure can be
conveniently represented by a tree, where an operator and its
operands are represented by a node and its children (subtrees).

op

Ek· · ·E2E1

Trees showing the operator/operand structure of an expression
are called abstract syntax trees, because they show the syntactic
structure of an expression independent of the notation in which
the expression was originally written.

Yih-Kuen Tsay (IM.NTU) Language Description: Syntax Programming Languages 2012 10 / 28

Abstract Syntax (cont.)

An abstract syntax tree for b ∗ b − 4 ∗ a ∗ c :

−

∗

c∗

a4

∗

bb

Yih-Kuen Tsay (IM.NTU) Language Description: Syntax Programming Languages 2012 11 / 28

Abstract Syntax (cont.)

An abstract syntax tree for if a > b then a else b:

if-then-else

ba>

ba

Yih-Kuen Tsay (IM.NTU) Language Description: Syntax Programming Languages 2012 12 / 28

Lexical Syntax

Keywords like if and symbols like <= are treated as units in a
programming language, just as words are treated as units in
English.

The syntax of a programming language is specified in terms of
units called tokens or terminals.

A lexical syntax for a language specifies the correspondence
between the written representation of the language and the
tokens or terminal in a grammar for the language.

Expression: b * b - 4 * a * c

Token sequence:
nameb ∗ nameb − number4 ∗ namea ∗ namec

Informal description usually suffices for specifying the lexical
syntax of a language; real numbers are one possible exception.

Yih-Kuen Tsay (IM.NTU) Language Description: Syntax Programming Languages 2012 13 / 28

Lexical Syntax (cont.)

binary operation symbol Pascal C, C++, Java
less than < < <
less than or equal to ≤ <= <=
equal = = ==
not equal 6= <> ! =
greater than > > >
greater than or equal to ≥ >= >=
add + + +
subtract − − −
multiply ∗ * *

divide, for reals / / /

divide, for integers div div /

remainder, for integers mod mod %

Yih-Kuen Tsay (IM.NTU) Language Description: Syntax Programming Languages 2012 14 / 28

Context-Free Grammars

The concrete syntax of a language describes its written
representation, including lexical details such as the placement of
keywords and punctuation marks.

Context-free grammars are a formalism for specifying concrete
syntax.

A context-free grammar, or simply grammar, has four parts:

A set of tokens or terminals.
A set of nonterminals.
A set of productions (production rules) for identifying the
components of a construct. Each production has a nonterminal
as its left side and a string over the sets of terminals and
nonterminals as its right side.
A nonterminal chosen as the starting nonterminal.

Yih-Kuen Tsay (IM.NTU) Language Description: Syntax Programming Languages 2012 15 / 28

Context-Free Grammars (cont.)

A CFG in Backus-Naur Form (BNF) for reals:

〈real-number〉 ::= 〈integer-part〉.〈fraction〉

〈integer-part〉 ::= 〈digit〉 | 〈integer-part〉〈digit〉

〈fraction〉 ::= 〈digit〉 | 〈digit〉〈fraction〉

〈digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Yih-Kuen Tsay (IM.NTU) Language Description: Syntax Programming Languages 2012 16 / 28

Parse Trees

real-number

fraction

fraction

digit

4

digit

1·

integer-part

digit

3

Yih-Kuen Tsay (IM.NTU) Language Description: Syntax Programming Languages 2012 17 / 28

Parse Trees (cont.)

The productions in a grammar are rules for building strings of
tokens.

A parse tree shows how a string can be built:

Each leaf is labeled with a terminal or 〈empty〉.
Each nonleaf node is labeled with a nonterminal.
The label of a nonleaf node is the left side of some production
and the labels of the children of the node, from left to right,
form the right side of that production.
The root is labeled with the starting nonterminal.

A parse tree generates the string formed by reading the
terminals at its leaves from left to right.

Yih-Kuen Tsay (IM.NTU) Language Description: Syntax Programming Languages 2012 18 / 28

Syntactic Ambiguity

A grammar for a language is syntactically ambiguous, or simply
ambiguous, if some string in its language has more than one
parse tree.

Programming languages can usually be described by
unambiguous grammars.

If ambiguities exist, they are resolved by establishing conventions
that rule out all but one parse tree for each string.

Example ambiguous grammar:

E ::= E − E | 0 | 1

The string 1− 0− 1, for instance, has two parse trees.

Yih-Kuen Tsay (IM.NTU) Language Description: Syntax Programming Languages 2012 19 / 28

Syntactic Ambiguity (cont.)

E ::= E − E | 0 | 1

Two parse trees for 1− 0− 1:

E

E

1

−E

E

0

−E

1

E

E

E

1

−E

0

−E

1

Yih-Kuen Tsay (IM.NTU) Language Description: Syntax Programming Languages 2012 20 / 28

Dangling Else

A well-known example of syntactic ambiguity is the dangling-else
ambiguity.

Example ambiguous grammar:

S ::= if E then S
S ::= if E then S else S

The string “if E1 then if E2 then S1 else S2 ” has two parse
trees; the else can be matched with either if.

The dangling-else ambiguity is typically resolved by matching an
else with the nearest unmatched if.

Yih-Kuen Tsay (IM.NTU) Language Description: Syntax Programming Languages 2012 21 / 28

Dangling Else (cont.)

S

S

S2elseS1thenE2ifthenE1if

S

S2else

S

S1thenE2ifthenE1if

Yih-Kuen Tsay (IM.NTU) Language Description: Syntax Programming Languages 2012 22 / 28

Derivations

A derivation consists of a sequence of strings, beginning with the
starting nonterminal. Each successive string is obtained by
replacing a nonterminal by the right side of one of its
productions. A derivation ends with a string consisting entirely
of terminals.

Example:

real-number ⇒ integer-part . fraction
⇒ integer-part digit . fraction
⇒ digit digit . fraction
⇒ 2 digit . fraction
⇒ 2 1 . fraction
⇒ 2 1 . digit fraction
⇒ 2 1 . 8 fraction
⇒ 2 1 . 8 digit
⇒ 2 1 . 8 9

Yih-Kuen Tsay (IM.NTU) Language Description: Syntax Programming Languages 2012 23 / 28

Parse Trees and Abstract Syntax Trees

A grammar for a language is usually designed to reflect the
abstract syntax.

A well-designed grammar can make it easy to pick out the
meaningful components of a construct.

With a well-designed grammar, parse trees are similar enough to
abstract syntax trees that the grammar can be used to organize
a language description or a program that exploits the syntax.

Yih-Kuen Tsay (IM.NTU) Language Description: Syntax Programming Languages 2012 24 / 28

A Grammar for Arithmetic Expressions

E ::= E + T | E − T | T
T ::= T ∗ F | T/F | F
F ::= number | name | (E)

In BNF,

〈experssion〉 ::= 〈experssion〉+ 〈term〉
| 〈experssion〉 − 〈term〉
| 〈term〉

〈term〉 ::= 〈term〉 ∗ 〈factor〉
| 〈term〉/〈factor〉
| 〈factor〉

〈factor〉 ::= number | name | (〈experssion〉)

Yih-Kuen Tsay (IM.NTU) Language Description: Syntax Programming Languages 2012 25 / 28

A Grammar for Arithmetic Expressions (cont.)

E

T

F

number3∗

T

F

number2∗

T

F

number4−

E

T

F

number7∗

T

F

number7

Yih-Kuen Tsay (IM.NTU) Language Description: Syntax Programming Languages 2012 26 / 28

Associativity and Precedence

In an increasing order of precedence,

operator assocaitivity
:= right associative
+, − left associative
∗, / left associative

A ::= E := A | E
E ::= E + T | E − T | T
T ::= T ∗ F | T/F | F
F ::= number | name | (E)

Yih-Kuen Tsay (IM.NTU) Language Description: Syntax Programming Languages 2012 27 / 28

Extended BNF (EBNF)

Below is an EBNF version of the grammar for arithmetic
expressions:

〈expression〉 ::= 〈term〉 {(‘+’ | ‘−’) 〈term〉}
〈term〉 ::= 〈factor〉 {(‘∗’ | ‘/’) 〈factor〉}
〈factor〉 ::= ‘(’ 〈expression〉 ‘)’ | name | number

Conventions in EBNF:

Braces, { and }, represent zero or more repetitions.
Brackets, [and], represent an optional construct.
A vertical bar, |, represents a choice.
Parentheses, (and), are used for grouping.

Yih-Kuen Tsay (IM.NTU) Language Description: Syntax Programming Languages 2012 28 / 28

	Introduction
	Syntax: An Overview
	Abstract Syntax
	The Lexical Layer
	Concrete Syntax

