

Alloy (Based on [Jackson 2006])

Yih-Kuen Tsay (with help from Yi-Wen Chang)

Dept. of Information Management National Taiwan University

Yih-Kuen Tsay (IM @ NTU)

Software Development Methods, Fall 2009: Alloy

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

Outline

1 About Alloy

2 Logic

Yih-Kuen Tsay (IM @ NTU)

3

・ロト ・聞ト ・ヨト ・ヨト

The Alloy Philosophy

- The core of software development is the design of abstractions.
- I have a sential form.
- You carefully design the abstractions and then develop their embodiments in code.
- To find flaws early, the abstractions should be made precise and unambiguous using formal specification.
- To be practically useful, the formal notation should be based on a small core of simple and robust concepts.
- It is even more important to adopt a fully automatic analysis that provides immediate feedbacks.
- The insist on full automation, according to the originator, was inspired by the success of model checking.

What Is Alloy?

- The Alloy approach consists of a modeling language and an automatic analyzer.
- The language, Alloy, is a structural modelling language based on first-order logic, for expressing complex structural constraints and behaviors.
- The Alloy Analyzer is a constraint solver that provides fully automatic simulation and checking.
- The approach is developed by the Software Design Group of Daniel Jackson at MIT.
- 😚 Jackson boasts the approach to be "lightweight formal methods".

ヘロト 人間ト 人口ト 人口ト

- Like OCL, Alloy has a pure ASCII notation and does not require special typesetting tools.
- As a modeling language, Alloy is similar to OCL, but it has a more conventional syntax and a simpler semantics.
- 😚 Unlike OCL, Alloy is designed for fully automatic analysis.

・ロト ・四ト ・ヨト ・ヨト

Alloy = Logic + Language + Analysis

😚 Logic

- 🌻 the core that provides the fundamental concepts
- 🌻 first-order logic + relational calculus

ᅙ Language

ጶ syntax for structuring specifications in the logic

😚 Analysis

- 🔅 bounded search by constraint solving
- simulation: finding instances of states or executions that satisfy a given property
- 👂 checking: finding a counterexample to a given property

Example

An address book for an email client

- associates email addresses with shorter names that are more convenient to use.
- alias: a nickname that can be used in place of the person's address
- group: an entire set of correspondents
- 😚 Sample models under "book/chapter2" in the Alloy Analyzer

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline

Yih-Kuen Tsay (IM @ NTU)

3

・ロト ・聞ト ・ヨト ・ヨト

Three Logics in One

📀 Predicate calculus style

Two kinds of expression: relation names, which are used as predicates, and tuples formed from quantified variables.

all n: Name, d, d': Address |

n -> d in address and n -> d' in address implies d = d'

Navigation expression style (probably the most convenient) Expressions denote sets, which are formed by "navigating" from quantified variables along relations.

all n: Name | lone n.address

😚 Relational calculus style

Expressions denote relations, and there are no quantifiers at all.

no ~address.address - iden

イロト 不得下 イヨト イヨト 三日

Atoms and Relations

Atoms are Alloy's primitive entities.

They are indivisible, immutable, and uninterpreted.

A relation is a structure that relates atoms.

- It consists of a set of tuples, each tuple being a sequence of one or more atoms.
- All relations are first-order, i.e., relations cannot contain relations.
- 📀 Every value in the Alloy logic is a relation.
 - 🌻 Relations, sets, and scalars all are the same thing.
 - A scalar is represented by a singleton set.

Everything Is a Relation

Sets are unary relations Name = {(N0), (N1), (N2)}

Addr = $\{(A0), (A1), (A2)\}$

Book = $\{(B0), (B1)\}$

- Scalars are singleton sets (unary relation with only one tuple) myName = {(N0)} yourName = {(N2)} myBook = {(B0)}
 - 훳 Binary relation

name = $\{(B0, N0), (B1, N0), (B2, N2)\}$

Sernary relation

Yih-Kuen Tsay (IM @ NTU)

Constants

none empty setuniv universal setiden identity

Example

```
\begin{split} &\text{Name} = \{(\text{N0}), \, (\text{N1}), \, (\text{N2})\} \\ &\text{Addr} = \{(\text{A0}), \, (\text{A1})\} \\ &\text{none} = \{\} \\ &\text{univ} = \{(\text{N0}), \, (\text{N1}), \, (\text{N2}), \, (\text{A0}), \, (\text{A1})\} \\ &\text{iden} = \{(\text{N0}, \, \text{N0}), \, (\text{N1}, \, \text{N1}), \, (\text{N2}, \, \text{N2}), \, (\text{A0}, \, \text{A0}), \, (\text{A1}, \, \text{A1})\} \end{split}
```

ヘロト 人間 ト ヘヨト ヘヨト

Set Operators

- + union
- & intersection
- difference
- in subset
- equality

Example

 $\begin{aligned} &\mathsf{Name} = \{(\mathsf{N0}), \, (\mathsf{N1}), \, (\mathsf{N2})\} \\ &\mathsf{Alias} = \{(\mathsf{N1}), \, (\mathsf{N2})\} \\ &\mathsf{Group} = \{(\mathsf{N0})\} \\ &\mathsf{RecentlyUsed} = \{(\mathsf{N0}), \, (\mathsf{N2})\} \end{aligned}$

Alias + Group = $\{(N0), (N1), (N2)\}$ Alias & RecentlyUsed = $\{(N2)\}$ Name - RecentlyUsed = $\{(N1)\}$ RecentlyUsed **in** Alias = false RecentlyUsed **in** Name = true Name = Group + Alias = true

ヘロト 人間ト 人口ト 人口ト

Yih-Kuen Tsay (IM @ NTU)

Product Operator

-> arrow (product)

Example

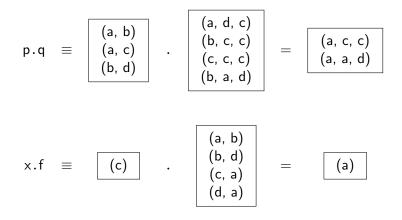
```
Name = {(N0), (N1)}
Addr = {(A0), (A1)}
Book = {(B0)}
```

Name->Addr = {(N0, A0), (N0, A1), (N1, A0), (N1, A1)} Book->Name->Addr = {(B0, N0, A0), (B0, N0, A1), (B0, N1, A0), (B0, N1, A1)}

3

ヘロト 人間ト 人口ト 人口ト

Relational Join



Software Development Methods, Fall 2009: Alloy

・ロト ・ 一 ・ ・ ヨト ・ ヨト

Join Operators

$$e1[e2] = e2.e1$$

a.b.c[d] = d.(a.b.c)

Example

```
Book = \{(B0)\}
 Name = \{(N0), (N1), (N2)\}
                                         myName = \{(N1)\}
 Addr = \{(A0), (A1), (A2)\}
                                         myAddr = \{(A0)\}
 Host = \{(H0), (H1)\}
address = \{(B0, N0, A0), (B0, N1, A0), (B0, N2, A2)\}
host = \{(A0, H0), (A1, H1), (A2, H1)\}
Book.address = {(N0, A0), (N1, A0), (N2, A2)}
Book.address[myName] = {(A0)}
Book.address.myName = \{\}
host[myAddr] = \{(H0)\}
address.host = {(B0, N0, H0), (B0, N1, H0), (B0, N2, H1)}
```

ヘロト 人間ト 人口ト 人口ト

Unary Operators

- ~ transpose
- transitive closure
- reflexive transitive closure (apply only to binary relations)

$$r = r + r.r + r.r.r + ...$$

*r = iden + r

イロト 不得 トイヨト イヨト 二日

Example

```
\begin{aligned} &\text{Node} = \{(\text{N0}), (\text{N1}), (\text{N2}), (\text{N3})\} \\ &\text{first} = \{(\text{N0})\} \quad \text{next} = \{(\text{N0}, \text{N1}), (\text{N1}, \text{N2}), (\text{N2}, \text{N3})\} \\ &\stackrel{\text{}}{\text{next}} = \{(\text{N1}, \text{N0}), (\text{N2}, \text{N1}), (\text{N3}, \text{N2})\} \\ &\stackrel{\text{}}{\text{next}} = \{(\text{N0}, \text{N1}), (\text{N0}, \text{N2}), (\text{N0}, \text{N3}), \\ & (\text{N1}, \text{N2}), (\text{N1}, \text{N3}), (\text{N2}, \text{N3})\} \\ &\text{} \text{*next} = \{(\text{N0}, \text{N0}), (\text{N0}, \text{N1}), (\text{N0}, \text{N2}), (\text{N0}, \text{N3}), (\text{N1}, \text{N1}), \\ & (\text{N1}, \text{N2}), (\text{N1}, \text{N3}), (\text{N2}, \text{N2}), (\text{N0}, \text{N3}), (\text{N3}, \text{N3})\} \\ &\text{first.} \text{*next} = \{(\text{N1}), (\text{N2}), (\text{N3})\} \\ &\text{first.} \text{*next} = \text{Node} \end{aligned}
```


Restriction and Override

- <: domain restriction
- :> range restriction
- ++ override

p ++ q =p - (domain[q] <: p) + q

Example

```
\begin{split} &\text{Name} = \{(\text{N0}), (\text{N1}), (\text{N2})\} \\ &\text{Alias} = \{(\text{N0}), (\text{N1})\} \\ &\text{Addr} = \{(\text{A0})\} \\ &\text{address} = \{(\text{N0}, \text{N1}), (\text{N1}, \text{N2}), (\text{N2}, \text{A0})\} \\ &\text{address} :> \text{Addr} = \{(\text{N2}, \text{A0})\} \\ &\text{Alias} <: \text{address} = \{(\text{N0}, \text{N1}), (\text{N1}, \text{N2})\} \\ &\text{address} :> \text{Name} = \{(\text{N0}, \text{N1}), (\text{N1}, \text{N2})\} \\ &\text{address} :> \text{Alias} = \{(\text{N0}, \text{N1}), (\text{N1}, \text{N2})\} \\ &\text{address} :> \text{Alias} = \{(\text{N0}, \text{N1}), (\text{N1}, \text{A0})\} \\ &\text{address} ++ \text{workAddress} = \{(\text{N0}, \text{N1}), (\text{N1}, \text{A0}), (\text{N2}, \text{A0})\} \\ \end{split}
```

m' = m ++ (k ->v) update map m with key-value pair (k, v)

Yih-Kuen Tsay (IM @ NTU)

Boolean Operators

not	!	negation	
and	&&	conjunction	
or		disjunction	
implies	=>	implication	
else		alternative	
iff	<=>	bi-implication	

Example

Four equivalent constraints:

```
F => G else H
F implies G else H
(F && G) || ((!F) && H)
(F and G) or ((not F) and H)
```

Yih-Kuen Tsay (IM @ NTU)

(日) (同) (日) (日) (日)

Quantification

all x: e F	F holds for <i>every</i> x in e
some x: e F	F holds for <i>at least one</i> x in e
no x: e F	F holds for <i>no</i> x in e
lone x: e F	F holds for <i>at most one</i> x in e
one x: e F	F holds for <i>exactly one</i> x in e

Example

- some n: Name, a: Address | a in n.address
 some name maps to some address address book not empty
- **no** n: Name | n **in** n.^address no name can be reached by lookups from itself - address book acyclic
- all n: Name | lone a: Address | a in n.address every name maps to at most one address - address book is functional
- **all** n: Name | **no disj** a, a': Address | (a + a') **in** n.address no name maps to two or more distinct addresses - same as above

・ロト ・ 一 ・ ・ ヨト ・ ヨト

Quantified Expressions

- **some** e has *at least one* tuple
- **no** e e has *no* tuples
- **lone** e has *at most one* tuple
- one e has exactly one tuple

Example

some Name set of names is not empty

some address

address book is not empty - it has a tuple

no (address.Addr - Name)

nothing is mapped to addresses except names

all n: Name | lone n.address

every name maps to at most one address

Yih-Kuen Tsay (IM @ NTU)

イロト 不得下 イヨト イヨト

Let Expressions and Constraints

let $x = e \mid A$ f implies e1 else e2

A can be a constraint or an expression. **if** f **then** e1 **else** e2

Example

```
Four equivalent constraints:
```

```
all n: Name | (some n.workAddress
implies n.address = n.workAddress else n.address = n.homeAddress)
```

```
all n: Name | let w = n.workAddress, a = n.address |
(some w implies a = w else a = n.homeAddress)
```

```
all n: Name | let w = n.workAddress |
    n.address = (some w implies w else n.homeAddress)
all n: Name | n.address =
```

(let w = n.workAddress | (some w implies w else n.homeAddress))

イロト 不得 トイヨト イヨト 二日

Comprehensions

{x1: e1, x2: e2, ..., xn: en | F}

Example

{n: Name | no n.^address & Addr}
set of names that don't resolve to any actual addresses

{n: Name, a: Address | n -> a in ^address}
binary relation mapping names to reachable addresses

イロト 不得下 イヨト イヨト

Declarations

relation-name : expression

 $m{arsigma}$ almost the same as the meaning of a subset constraint × $m{in}$ e

Example

```
address: Name->Addr
```

a single address book mapping names to addresses

```
addr: Book->Name->Addr
a collection of address books mapping books to names to addresses
```

address: Name->(Name + Addr) a multilevel address book mapping names to names and addresses

ヘロト 人間ト 人口ト 人口ト

Set Multiplicities

set	any number
one	exactly one
lone	zero or one
some	one or more

x: *m* e x: e <=> x: **one** e

< ロ > < 同 > < 回 > < 回 > < 回 > <

Example

RecentlyUsed: **set** Name *RecentlyUsed is a subset of the set Name*

senderAddress: Addr senderAddress is a singleton subset of Addr

senderName: **lone** Name senderName is either empty or a singleton subset of Name

receiverAddresses: **some** Addr receiverAddresses is a nonempty subset of Addr

Yih-Kuen Tsay (IM @ NTU)

Relation Multiplicities

r: A *m* -> *n* B

- 😚 r: A -> (B m -> n C) <=> all a: A | a.r: B m -> n C
- 😚 r: (A *m -> n* B) -> C <=> all c: C | r.c: A *m -> n* B

Example

workAddress: Name -> lone Addr
each name refers to at most one work address

members: Group lone -> some Addr address belongs to at most one group name and group contains at least one address

イロト 不得 トイヨト イヨト

Cardinality Constraints

#r	number of tuples in r integer literal plus minus	=	equals
		<	less than
		>	greater than
+		=<	less than or equal to
-		>=	greater than or equal to

sum x: e | ie

sum of integer expression ie for all singletons x drawn from e

Example

all b: Bag | #b.marbles =< 3
 all bags have 3 or less marbles</pre>

#Marble = sum b: Bag | #b.marbles
 the sum of the marbles across all bags equals the total number of marbles

Yih-Kuen Tsay (IM @ NTU)

(日) (同) (三) (三) (三)

Outline

Yih-Kuen Tsay (IM @ NTU)

Software Development Methods, Fall 2009: Alloy

28 / 58

3

ヘロト 人間 ト くほ ト くほ トー

"I'm My Own Grandpa" in Alloy


```
module language/grandpa1 /* module header */
abstract sig Person { /* signature declarations */
  father: lone Man.
  mother: Ione Woman
}
sig Man extends Person {
  wife: lone Woman
}
sig Woman extends Person {
  husband: lone Man
fact { /* constraint paragraphs */
  no p: Person | p in p. ^(mother + father)
  wife = ~husband
```

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

"I'm My Own Grandpa" in Alloy (Cont'd)


```
assert noSelfFather { /* assertions */
  no m: Man | m = m.father
check noSelfFather /* commands */
fun grandpas[p: Person] : set Person { /* constraint paragraphs */
  p.(mother + father).father
}
pred ownGrandpa[p: Person] { /* constraint paragraphs */
  p in grandpas[p]
}
run ownGrandpa for 4 Person /* commands */
```

Yih-Kuen Tsay (IM @ NTU)

30 / 58

(ロト (雪) (目) (日)

"I'm My Own Grandpa" in Alloy (Cont'd)


```
module language/grandpa2
```

```
fact {
  no p: Person | p in p. (mother + father) /* biology */
  wife = ~husband /* terminology */
  no (wife + husband) & ^(mother + father) /* social convention */
}
fun grandpas[p: Person] : set Person {
  let parent = mother + father + father.wife + mother.husband
    p.parent.parent & Man
}
pred ownGrandpa[p: Person] {
  p in grandpas[p]
run ownGrandpa for 4 Person
                                                     - 4 週 ト - 4 三 ト - 4 三 ト
```

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Alloy

Signatures


```
sig A {}
set of atoms A
sig A {}
sig B {}
disjoint sets A and B (no A & B)
sig A, B {}
same as above
```

Signatures (Cont'd)

sig B extends A {}
set B is a subset of A (B in A)
sig B extends A {}
sig C extends A {}
B and C are disjoint subsets of A (B in A && C in A && no B & C)

sig B, C extends A {}
same as above

abstract sig A {}
sig B extends A {}
sig C extends A {}
A is partitioned by disjoint subsets B and C (no B & C && A = (B + C))

Signatures (Cont'd)


```
sig B in A \{\}
B is a subset of A - not necessarily disjoint from any other set
sig C in A + B \{\}
C is a subset of the union of A and B
one sig A \{\}
lone sig B \{\}
some sig C {}
A is a singleton set
B is a singleton or empty
C is a non-empty set
```

ヘロト 人間ト 人口ト 人口ト

Field Declarations


```
sig A {f: e}
f is a binary relation with domain A and range given by expression e
f is constrained to be a function: (f: A \rightarrow one e) or (all a: A | a.f: one e)
sig A { f1: one e1, f2: lone e2, f3: some e3, f4: set e4 }
(all a: A \mid a.fn : m e)
sig A {f, g: e}
two fields with same constraints
sig A {f: e1 m -> n e2}
(f: A -> (e1 m -> n e2)) or (all a: A | a.f : e1 m -> n e2)
sig Book {
  names: set Name.
  addrs: names -> Addr
}
dependent fields
                       (all b: Book | b.addrs: b.names -> Addr)
                                                    イロト 不得下 イヨト イヨト 三日
  Yih-Kuen Tsay (IM @ NTU)
                          Software Development Methods, Fall 2009: Alloy
                                                                             35 / 58
```

Fields in the "Self-Grandpas" Example


```
abstract sig Person {
  father: lone Man,
  mother: lone Woman
sig Man extends Person {
  wife: Ione Woman
sig Woman extends Person {
  husband: lone Man
```

- 😚 Fathers are men and everyone has at most one.
- 😚 Mothers are women and everyone has at most one.
- 😚 Wives are women and every man has at most one.
- 😚 Husbands are men and every woman has at most one.

Facts

fact { F }
fact f { F }
sig S { ... }{ F }

Facts introduce constraints that are assumed to always hold.

Example

```
sig Host {}
sig Link {from, to: Host}
```

```
fact {all x: Link | x.from != x.to}
no links from a host to itself
```

fact noSelfLinks {all x: Link | x.from != x.to}
same as above

```
sig Link {from, to: Host} {from != to}
same as above, with implicit 'this.'
```

< 回 > < 三 > < 三 >

Facts in "Self-Grandpas"


```
fact {
    no p: Person |
    p in p.^(mother + father)
    wife = ~husband
}
```

- 😚 No person is his or her own ancestor.
- 😚 A man's wife has that man as a husband.
- 😚 A woman's husband has that woman as a wife.

- 4 同 6 4 日 6 4 日 6

Functions

fun f[x1: e1, ..., xn: en] : e { E }

Functions are named expressions with declaration parameters and a declaration expression as a result invoked by providing an expression for each parameter.

Example

```
sig Name, Addr {}
sig Book { addr: Name -> Addr }
fun lookup[b: Book, n: Name] : set Addr {
    b.addr[n]
}
fact everyNameMapped {
    all b: Book, n: Name | some lookup[b, n]
}
```

イロト イポト イヨト イヨト

Predicates


```
pred p[x1: e1, ..., xn: en] { F }
```

😚 Predicates are named formulae with declaration parameters.

Example

```
sig Name, Addr {}
sig Book { addr: Name -> Addr }
pred contains[b: Book, n: Name, d: Addr] {
  n->d in b.addr
}
fact everyNameMapped {
  all b: Book, n: Name |
    some d: Addr | contains[b, n, a]
```

イロト 人間ト イヨト イヨト

Functions and Predicates in "Self-Grandpas"


```
fun grandpas[p: Person] : set Person {
    p.(mother + father).father
}
pred ownGrandpa[p: Person] {
    p in grandpas[p]
}
```

A person's grandpas are the fathers of one's own mother and father.

Yih-Kuen Tsay (IM @ NTU)

• • = • • = •

"Receiver" Syntax


```
\begin{array}{l} \mbox{fun } f[x: \ X, \ y: \ Y, \ ...] \ : \ Z \ \{...x...\} \\ \mbox{fun } X.f[y:Y, \ ...] \ : \ Z \ \{...this...\} \end{array}
```

pred p[x: X, y: Y, ...] {...x...} pred X.p[y:Y, ...] {...this...}

・ロト ・四ト ・ヨト ・ヨト

Whether or not the predicate or function is declared in this way, it can be used in the form

x.p[y, ...]

where x is taken as the first argument, y as the second, and so on.

Example

```
fun Person.grandpas : set Person {
    this.(mother + father).father
}
```

pred Person.ownGrandpa {
 this in this.grandpas

IM

Assertions

assert a $\{ F \}$

An assertion is a constraint intended to follow from facts of the model.

Example

```
sig Node {children: set Node}
one sig Root extends Node {}
fact { Node in Root.*children }
assert someParent { // invalid assertion
    all n: Node | some children.n
}
assert someParent { // valid assertion
    all n: Node - Root | some children.n
}
```

3

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

IM

Check Commands

$\textbf{assert} ~ \texttt{a} ~ \{ ~ \texttt{F} ~ \}$

check a scope

- instructs the analyzer to search for a counterexample to assertion within the scope
- 😚 if the model has facts M, finds a solution to M&&!F

Example

check a top-level sigs bound by 3

check a for default top-level sigs bound by default

check a for default but list default overridden by bounds in list

check a for list sigs bound in list, invalid if any unbound

Check Commands (Cont'd)

Example

```
abstract sig Person {}
sig Man extends Person {}
sig Woman extends Person {}
sig Grandpa extends Man {}
check a
check a for 4
check a for 4 but 3 Man. 5 Woman
check a for 4 Person
check a for 3 Man. 4 Woman
check a for 3 Man, 4 Woman, 2 Grandpa
// invalid, because top-level bounds unclear
check a for 3 Man
check a for 5 Woman, 2 Grandpa
```

3

イロト イポト イヨト イヨト

Assertion Checks in "Self-Grandpas"


```
fact {
  no p: Person | p in p.^(mother + father)
  wife = ~husband
assert noSelfFather {
  no m: Man \mid m = m.father
check noSelfFather
```

The check command instructs the analyzer to search for a counterexample to noSelfFather within a scope of at most 3 Persons.

Yih-Kuen Tsay (IM @ NTU)

A D A D A D A

Run Commands

pred p[x: X, y: Y, ...] { F }
run p scope

- instructs the analyzer to search for an instance of the predicate within scope
- if the model has facts M, finds a solution to M && (some x : X, y : Y, ... | F)

```
fun f[x: X, y: Y, ...] : R { E }
run f scope
```

- instructs the analyzer to search for an instance of the function within scope
- if the model has facts M, finds a solution to M && (some x : X, y : Y, ..., result : R | result = E)

Yih-Kuen Tsay (IM @ NTU)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

Predicate Simulation in "Self-Grandpas"


```
fun grandpas[p: Person] : set Person {
    p.(mother + father).father
}
pred ownGrandpa[p: Person] {
    p in grandpas[p]
}
run ownGrandpa for 4 Person
```

The run command instructs the analyzer to search for a configuration with at most 4 people in which a man is his own grandfather.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Alloy

Types and Type Checking

- Alloy's type system has two functions.
 - It allows the analyzer to catch errors before any serious analysis is performed.
 - 🌻 It is used to resolve overloading.
- A basic type is introduced for each top-level signature and for each extension signature.
 - A signature that is declared independently of any other is a top-level signature.
- When signature A1 extends signature A, the type associated with A1 is a subtype of the type associated with A.
- A subset signature acquired its parent's type.
 - If declared as a subset of a union of signatures, its type is the union of the types of its parents.
- Two basic types are said to *overlap* if one is a subtype of the other.

(日) (同) (日) (日) (日)

Types and Type Checking (Cont'd)

Every expression has a *relational type*, consisting of a union of products:

$$A_1 \rightarrow B_1 \rightarrow \dots + A_2 \rightarrow B_2 \rightarrow \dots + \dots$$

where each of the A_i , B_i , and so on, is a basic type.

A binary relation's type, for example, will look like this:

$$A_1 \rightarrow B_1 + A_2 \rightarrow B_2 + \dots$$

and a set's type like this:

$$A_1 + A_2 + \dots$$

Fine type of an expression is itself just an Alloy expression.

- Types are inferred automatically so that the value of the type always contains the values of the expressions. It's an *overapproximation*.
 - If two types have an empty intersection, the expressions they were obtained from must also have an empty intersection.

Types and Type Checking (Cont'd)

- 😚 There are two kinds of type error.
 - It is illegal to form expressions that would give relations of mixed arity.
 An expression is illegal if it can be shown, from the declarations alone, to be redundant, or to contain a redundant subexpression.
- The subtype hierarchy is used primarily to determine whether types are disjoint.
- The typing of an expression of the form s.r where s is a set and r is a relation only requires s and the domain of r to overlap.
 - The case that two types are disjoint is rejected, because it always results in the empty set.
- 😚 Type checking is sound.
 - When checking an intersection expression, for example, if the resulting type is empty, the relation represented by the expression must be empty.

Yih-Kuen Tsay (IM @ NTU)

ヘロト 人間ト 人口ト 人口ト

Types and Type Checking (Cont'd)

- A signature defines a local namespace for its declarations, so you can use the same field name in different signatures.
- When a field name refers to possibly multiple fields, the types of the candidate fields are used to determine which field is meant.
- 😚 If more than one field is possible, an error is reported.

Example

sig Object, Block {}
sig Directory extends Object {contents: set Object}
sig File extends Object {contents: set Block}

all f: File | **some** f.contents // The occurrence of the field name *contents* is trivially resolved.

all o: Object | some o.contents

// The occurrence of *contents* here is not resolved, and the constraint is rejected.

(日) (同) (三) (三) (三)

Outline

About Alloy

2 Logic

3 Language

Yih-Kuen Tsay (IM @ NTU)

Software Development Methods, Fall 2009: Alloy

53 / 58

3

ヘロト 人間 ト くほ ト くほ トー

The Alloy Analyzer

- 😚 The Alloy Analyzer is a 'model finder'.
- Given a logical formula, it attempts to find a model that makes the formula true.
 - A model is a binding of the variables to values.
- For simulation, the formula will be some part of the system description.
 - If it is a state invariant INV, models of INV will be states that satisfy the invariant.
 - If it is an operation OP, with variables representing the before and after states, models of OP will be legal state transitions.
 - For checking, the formula is a negation, usually of an implication.
 - To check that the system described by the property SYS has a property PROP, you would assert (SYS implies PROP).
 - The Alloy Analyzer negates the assertion, and looks for a model of (SYS and not PROP), which, if found, will be a counterexample to the claim.

The Small Scope Hypothesis

- Simulation is for determining consistency (i.e., satisfiability) and checking is for determining validity and these problems are undecidable for Alloy specifications.
- The Alloy Analyzer restricts the simulation and checking operations to a finite scope.
- The validity and consistency problems within a finite scope are decidable problems.
- Most bugs have a small counterexample.
- If an assertion is invalid, it probably has a small counterexample.

ヘロト 不良 トイヨト イヨト

How Does It Work

- The Alloy Analyzer is essentially a compiler.
- It translates the problem to be analyzed into a (usually huge) boolean formula.
- Think about a particular value of a binary relation r from a set A to a set B:
 - The value can be represented as an adjacency matrix of 0's and 1's, with a 1 in row *i* and column *j* when the *ith* element of *A* is mapped to the *jth* element of *B*.
 - So the space of all possible values of r can be represented by a matrix of *boolean variables*.
 - The dimensions of these matrices are determined by the scope; if the scope bounds A by 3 and B by 4, r will be a 3 × 4 matrix containing 12 boolean variables, and having 2¹² possible values.

Yih-Kuen Tsay (IM @ NTU)

ヘロト 人間ト 人口ト 人口ト

How Does It Work (Cont'd)

Now, for each relational expression, a matrix is created whose elements are boolean expressions.

- For example, the expression corresponding to p + q for binary relations p and q would have the expression $p_{i,j} \lor q_{i,j}$ in row i and column j.
- 😚 For each relational formula, a boolean formula is created.
 - For example, the formula corresponding to p in q would be the conjunction of $p_{i,j} \Rightarrow q_{i,j}$ over all values of i and j.
- The resulting formula is handed to a SAT solver, and the solution is translated back by the Alloy Analyzer into the language of the model.
- All problems are solved within a user-specified scope that bounds the size of the domains, and thus makes the problem finite (and reducable to a boolean formula).
- Alloy analyzer implements an efficient translation in the sense that the problem instance presented to the SAT solver is as small as possible.

イロト 不得下 イヨト イヨト 三日

Differences from Model Checkers

- The Alloy Analyzer is designed for analyzing state machines with operations over complex states.
- Model checkers are designed for analyzing state machines that are composed of several state machines running in parallel, each with relatively simple states.
- Alloy allows structural constraints on the state to be described very directly (with sets and relations), whereas most model checking languages provide only relatively low-level data types (such as arrays and records).
- Model checkers do a temporal analysis that compares a state machine to another machine or a temporal logic formula.

ヘロト 人間ト 人口ト 人口ト