
Automata-Based Model Checking

Yih-Kuen Tsay

Dept. of Information Management
National Taiwan University

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 1 / 35



Outline

1 Introduction: Model Checking

2 Büchi and Generalized Büchi Automata

3 Automata-Based Model Checking

4 Basic Algorithms: Intersection and Emptiness Test

5 Concluding Remarks

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 2 / 35



Model Checking

The Problem
Determining if the specification is true of a (finite-state
concurrent) system, i.e., checking if the system is a model of
the specification
The Process

Modeling: convert a design into a formal model
Main systems considered: finite-state transition systems (modeling
digital circuits, communication protocols, etc.)
Specification: state the properties that the design must satify
Typical specification languages: propositional modal/temporal logics
Verification: is automatic ideally, but may involve human assistance
in practice

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 3 / 35



Model Checking (cont.)

Advantages (over deductive verification methods):
Fully automatic
Providing counterexamples

Main obstacle: the state explosion problem

Became practically viable with symbolic encoding

Has been most successful in verifying hardware and
communication protocols

Commercial model checking tools in the market

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 4 / 35



Formal Modeling

First two steps in correctness verification:
1 Specify the desired properties
2 Construct a formal model (with the desired properties in mind)

Capture the necessary properties and leave out the irrelevant
Example: gates and boolean values vs. voltage levels
Example: exchange of messages vs. contents of messages

Description of a formal model
Graphs
Logic formulae

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 5 / 35



Concurrent Reactive Systems

A typical type of systems that model checking techniques deal
with

Interact frequently with the environment and may not
terminate

Temporal (not just input-output) behaviors are most important

Modeling elements:
State: a snapshot of the system at a particular instance
Transition:

how the system changes its state as a result of some action
described by a pair of the state before and the state after the action

Computation: an infinite sequence of states resulted from transitions

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 6 / 35



Kripke Structures

Kripke structures are one of the most popular types of formal
models for concurrent systems.

Let AP be a set of atomic propositions (representing things
you want to observe).

A Kripke structure M over AP is a tuple 〈S , S0,R , L〉:
S is a finite set of states,
S0 ⊆ S is the set of initial states,
R ⊆ S × S is a total transition relation, and
L : S → 2AP is a function labeling each state with a subset of
propositions (which are true in that state).

A computation or path of M from a state s is an infinite
sequence of states σ = s0, s1, s2, · · · such that s0 = s and
(si , si+1) ∈ R , for all i ≥ 0.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 7 / 35



Example: Mutual Exclusion Program PMX

PMX = m : cobegin P0 ‖P1 coend m′

P0 =
l0 : while True do

NC0 : wait T = 0;
CR0 : T := 1;

od;
l ′0

P1 =
l1 : while True do

NC1 : wait T = 1;
CR1 : T := 0;

od;
l ′1

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 8 / 35



A Kripke Structure for PMX

T=0
bot, bot

T=1
bot, bot

T=0
l
0
, l

1

T=1
l
0
, l

1

T=0
NC0, l1

T=1
l0, NC1

T=0
CR0, l1

T=1
l0, CR1

T=0
l0, NC1

T=1
NC 0, NC 1

T=1
NC0, l1

T=0
NC 0, NC 1

T=1
NC 0, CR 1

T=0
CR 0, NC 1

Source: redrawn from [Clarke et al. 1999, Fig 2.2]

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 9 / 35



Properties

About the computations of a system and typically temporal
Types of properties

Safety: “something bad” does not happen
Liveness: “something good” will eventually happen

Examples
Two processes are never in the critical section at the same time.
(safety)
A request always gets a reply. (liveness)

Two commonly used specification formalisms
Temporal logic (linear-time vs. branching-time)
Automata (on infinite objects)

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 10 / 35



Outline

1 Introduction: Model Checking

2 Büchi and Generalized Büchi Automata

3 Automata-Based Model Checking

4 Basic Algorithms: Intersection and Emptiness Test

5 Concluding Remarks

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 11 / 35



Automata for Modeling Infinite Behaviors

The simplest computation model for finite behaviors is the
finite state automaton, which accepts finite words.

The simplest computation model for infinite behaviors is the
ω-automaton, which accepts infinite words.

Both have the same syntactic structure.

Model checking traditionally deals with non-terminating
systems.

Infinite words conveniently represent the infinite behaviors
exhibited by a non-terminating system.

Büchi automata are the simplest kind of ω-automata.

They were first proposed and studied by J.R. Büchi in the early
1960’s, to devise decision procedures for S1S (a second-order
theory).

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 12 / 35



Büchi Automata

A Büchi automaton (BA) has the same structure as a finite
state automaton (FA) and is also given by a 5-tuple
(Σ,Q,∆, q0,F ):

1 Σ is a finite set of symbols (the alphabet),
2 Q is a finite set of states,
3 ∆ ⊆ Q × Σ× Q is the transition relation,
4 q0 ∈ Q is the start state (sometimes we allow multiple start states,

indicated by Q0 or Q0), and
5 F ⊆ Q is the set of accepting (final in FA) states.

Let B = (Σ,Q,∆, q0,F ) be a BA and
w = w1w2 . . .wiwi+1 . . . be an infinite string (or word) over Σ.

A run of B over w is a sequence of states
r0, r1, r2 . . . , ri ri+1 . . . such that

1 r0 = q0 and
2 (ri ,wi+1, ri+1) ∈ ∆ for i ≥ 0.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 13 / 35



Büchi Automata (cont.)

Let inf (ρ) denote the set of states occurring infinitely many
times in a run ρ.

An infinite word w ∈ Σω is accepted by a BA B if there exists
a run ρ of B over w satisfying the condition:

inf (ρ) ∩ F 6= ∅.

The language recognized by B (or the language of B), denoted
L(B), is the set of all words that are accepted by B .

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 14 / 35



An Example Büchi Automaton

a

b

b

a

q0 q1

This Büchi automaton accepts infinite words over {a, b} that
have infinitely many a’s.

Using an ω-regular expression, its language is expressed as
(b∗a)ω.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 15 / 35



Closure Properties

A class of languages is closed under intersection if the
intersection of any two languages in the class remains in the
class.

Analogously, for closure under complementation.

Theorem

The class of languages recognizable by Büchi automata is closed
under intersection and complementation (and hence all boolean
operations).

Proof.

Closure under intersection will be proven later by giving a procedure
for constructing a Büchi automaton that recognizes the intersection
of the languages of two given Büchi automata.
Closure under complementation will be proven in a separate
lecture.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 16 / 35



Generalized Büchi Automata

A generalized Büchi automaton (GBA) has an acceptance
component of the form F = {F1,F2, · · · ,Fn} ⊆ 2Q .

A run ρ of a GBA is accepting if for each Fi ∈ F ,
inf (ρ) ∩ Fi 6= ∅.
GBA’s naturally arise in the modeling of finite-state concurrent
systems with fairness constraints.

They are also a convenient intermediate representation in the
translation from a linear temporal formula to an equivalent BA.

There is a simple translation from a GBA to a Büchi
automaton, as shown next.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 17 / 35



GBA to BA

Let B = (Σ,Q,∆,Q0,F ), where F = {F1, · · · ,Fn}, be a
GBA.

Construct B ′ = (Σ,Q × {0, · · · , n},∆′,Q0 × {0},Q × {n}).

The transition relation ∆′ is constructed such that
(〈q, x〉, a, 〈q′, y〉) ∈ ∆′ when (q, a, q′) ∈ ∆ and x and y are
defined according to the following rules:

If q′ ∈ Fi and x = i − 1, then y = i .
If x = n, then y = 0.
Otherwise, y = x .

Claim: L(B ′) = L(B).

Theorem

For every GBA B, there is an equivalent BA B ′ such that
L(B ′) = L(B).

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 18 / 35



Outline

1 Introduction: Model Checking

2 Büchi and Generalized Büchi Automata

3 Automata-Based Model Checking

4 Basic Algorithms: Intersection and Emptiness Test

5 Concluding Remarks

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 19 / 35



Model Checking Using Automata

Finite automata can be used to model concurrent and reactive
systems as well.

One of the main advantages of using automata for model
checking is that both the modeled system and the specification
are represented in the same way.

A Kripke structure directly corresponds to a Büchi automaton,
where all the states are accepting.
A Kripke structure (S ,R , S0, L) can be transformed into an
automaton A = (Σ, S ∪ {ι},∆, {ι}, S ∪ {ι}) with Σ = 2AP

where
(s, α, s ′) ∈ ∆ for s, s ′ ∈ S iff (s, s ′) ∈ R and α = L(s ′) and
(ι, α, s) ∈ ∆ iff s ∈ S0 and α = L(s).

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 20 / 35



Model Checking Using Automata (cont.)

The given system is modeled as a Büchi automaton A.

Suppose the desired property is originally given by a linear
temporal formula f .

Let Bf (resp. B¬f ) denote a Büchi automaton equivalent to f
(resp. ¬f ); we will later study how a temporal formula can be
translated into an automaton.

The model checking problem A |= f is equivalent to asking
whether

L(A) ⊆ L(Bf ) or L(A) ∩ L(B¬f ) = ∅.
The well-used model checker SPIN, for example, adopts this
automata-theoretic approach.
So, we are left with two basic problems:

Compute the intersection of two Büchi automata.
Test the emptiness of the resulting automaton.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 21 / 35



Outline

1 Introduction: Model Checking

2 Büchi and Generalized Büchi Automata

3 Automata-Based Model Checking

4 Basic Algorithms: Intersection and Emptiness Test

5 Concluding Remarks

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 22 / 35



Intersection of Büchi Automata

Let B1 = (Σ,Q1,∆1,Q
0
1 ,F1) and B2 = (Σ,Q2,∆2,Q

0
2 ,F2).

We can build an automaton for L(B1) ∩ L(B2) as follows.

B1 ∩ B2 =
(Σ,Q1 × Q2 × {0, 1, 2},∆,Q0

1 × Q0
2 × {0},Q1 × Q2 × {2}).

We have (〈r , q, x〉, a, 〈r ′, q′, y〉) ∈ ∆ iff the following
conditions hold:

(r , a, r ′) ∈ ∆1 and (q, a, q′) ∈ ∆2.
The third component is affected by the accepting conditions of B1

and B2.

If x = 0 and r ′ ∈ F1, then y = 1.
If x = 1 and q′ ∈ F2, then y = 2.
If x = 2, then y = 0.
Otherwise, y = x .

The third component is responsible for guaranteeing that
accepting states from both B1 and B2 appear infinitely often.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 23 / 35



Intersection of Büchi Automata (cont.)

A simpler intersection may be obtained when all of the states
of one of the automata are accepting.

Assuming all states of B1 are accepting and that the
acceptance set of B2 is F2, their intersection can be defined as
follows:

B1 ∩ B2 = (Σ,Q1 × Q2,∆
′,Q0

1 × Q0
2 ,Q1 × F2)

where (〈r , q〉, a, 〈r ′, q′〉) ∈ ∆′ iff (r , a, r ′) ∈ ∆1 and
(q, a, q′) ∈ ∆2.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 24 / 35



Checking Emptiness

Let ρ be an accepting run of a Büchi automaton
B = (Σ,Q,∆,Q0,F ).

Then, ρ contains infinitely many accepting states from F .

Since Q is finite, there is some suffix ρ′ of ρ such that every
state on it appears infinitely many times.

Each state on ρ′ is reachable from any other state on ρ′.

Hence, the states in ρ′ are included in a strongly connected
component.

This component is reachable from an initial state and contains
an accepting state.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 25 / 35



Checking Emptiness (cont.)

Conversely, any strongly connected component that is
reachable from an initial state and contains an accepting state
generates an accepting run of the automaton.

Thus, checking nonemptiness of L(B) is equivalent to finding a
strongly connected component that is reachable from an initial
state and contains an accepting state.

That is, the language L(B) is nonempty iff there is a reachable
accepting state with a cycle back to itself.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 26 / 35



Double DFS Algorithm

procedure emptiness
for all q0 ∈ Q0 do

dfs1(q0);
terminate(True);

end procedure

procedure dfs1(q)
local q′;
hash(q);
for all successors q′ of q do

if q′ not in the hash table then dfs1(q′);
if accept(q) then dfs2(q);

end procedure

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 27 / 35



Double DFS Algorithm (cont.)

procedure dfs2(q)
local q′;
flag(q);
for all successors q′ of q do

if q′ on dfs1 stack then terminate(False);
else if q′ not flagged then dfs2(q′);
end if;

end procedure

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 28 / 35



Correctness

Lemma

Let q be a node that does not appear on any cycle. Then the DFS
algorithm will backtrack from q only after all the nodes that are
reachable from q have been explored and backtracked from.

Theorem

The double DFS algorithm returns a counterexample for the
emptiness of the checked automaton B exactly when the language
L(B) is not empty.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 29 / 35



Correctness (cont.)

Suppose a second DFS is started from a state q and there is a
path from q to some state p on the search stack of the first
DFS.

There are two cases:

There exists a path from q to a state on the search stack of the first
DFS that contains only unflagged nodes when the second DFS is
started from q.
On every path from q to a state on the search stack of the first DFS
there exists a state r that is already flagged.

The algorithm will find a cycle in the first case.

We show that the second case is impossible.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 30 / 35



Correctness (cont.)

Suppose the contrary: On every path from q to a state on the
search stack of the first DFS there exists a state r that is
already flagged.

Then there is an accepting state from which a second DFS
starts but fails to find a cycle even though one exists.

Let q be the first such state.
Let r be the first flagged state that is reached from q during the
second DFS and is on a cycle through q.
Let q′ be the accepting state that starts the second DFS in which r
was first encountered.

Thus, according to our assumptions, a second DFS was started
from q′ before a second DFS was started from q.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 31 / 35



Correctness (cont.)

Case 1: The state q′ is reachable from q.
There is a cycle q′ → · · · → r → · · · → q → · · · → q′.
This cycle could not have been found previously.
This contradicts our assumption that q is the first accepting state
from which the second DFS missed a cycle.

Case 2: The state q′ is not reachable from q.
q′ cannot appear on a cycle.
q is reachable from r and q′.
If q′ does not occur on a cycle, by Lemma 23 we must have
backtracked from q in the first DFS before from q′.
This contradicts our assumption about the order of doing the second
DFS.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 32 / 35



Outline

1 Introduction: Model Checking

2 Büchi and Generalized Büchi Automata

3 Automata-Based Model Checking

4 Basic Algorithms: Intersection and Emptiness Test

5 Concluding Remarks

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 33 / 35



Concluding Remarks

Properties of a system are more conveniently specified by linear
temporal logic formulae.

In a separate lecture, we will study how a linear temporal logic
formula can be translated into an equivalent Büchi automaton.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 34 / 35



References

J.R. Büchi. On a decision method in restricted second-order
arithmetic, in Proceedings of the 1960 International Congress
on Logic, Methodology and Philosophy of Science, Stanford
University Press, 1962.

E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking,
The MIT Press, 1999.

E. Grädel, W. Thomas, and T. Wilke. Automata, Logics, and
Infinite Games (LNCS 2500), Springer, 2002.

G.J. Holzmann. The SPIN Model Checker: Primer and
Reference Manual, Addison-Wesley, 2003.

W. Thomas. Automata on infinite objects, Handbook of
Theoretical Computer Science (Vol. B), 1990.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Automata-Based Model Checking 35 / 35


	Introduction: Model Checking
	Büchi and Generalized Büchi Automata
	Automata-Based Model Checking
	Basic Algorithms: Intersection and Emptiness Test
	Concluding Remarks

