
1

Behavioral Patterns
Jim Yu

IBM
China Development Lab

Greater China Group

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

 Implement program behaviors in an 
object-oriented and flexible way

 Assign responsibility among classes or 
objects

 Encapsulate program behaviors that might 
change
 e.g. algorithms, state-dependent behaviors, 

object communications, object traversal
 Reduce coupling in the program
 decouple request sender and receiver

2

Why Behavioral Patterns

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

3

Iterator
Next, please!

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

 Show your belongings
 Iterate over the items in you have and 

display them
 Save the progress

 Iterate over the player's object graph and 
save them 

 First attempt:
 Traverse the linked list via each node's next 

pointer
 Depth-first traverse the player's object 

graph

4

Challenge

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

 Problem: we often want to iterate over a 
collection of objects. How can we do this 
in a flexible way?

 Think: what's the effort if you replace your 
LinkedList with an ArrayList? Or even a 
BinarySearchTree? Can you provide 
multiple traversal methods?

 Target: given an aggregate (collection) 
class, we want to traverse its elements 
without knowing how it's implemented. 

5

Iterator

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

6

Structure

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

 Class Iterator defines an interface for 
accessing and traversing elements

 Class ConcreteIterator implements the 
Iterator interface; keeps track of the 
current position of traversal

 Class Aggregate defines an interface for 
creating an Iterator object

 Class ConcreteAggregate implements the 
Iterator creation interface to return an 
instance of the proper ConcreteIterator

7

Participants

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

 Use the Iterator pattern
 to access the elements of an aggregate 

object
 to support multiple traversals of aggregate 

objects
 forwards, backwards, depth-first, etc.

 to provide a uniform interface for traversing 
different Aggregate structures
 linked lists, array, tree, graph, etc.

8

Applicability

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

9

Sample Structure

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

 List and Iterator:
 class List and Iterator

 Concrete List and Iterator
 class ArrayList and ListIterator

 Using Iterator
 Method PrintUsers.testPrintUsers()
 Reverse Iterator: method 

ReverseIterate.testReverseIterator()

10

Samples

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

 It supports variations in the traversal of an 
aggregate: replace the iterator and the 
traversal algorithm is changed

 Iterators simplify the Aggregate interface: 
Iterator methods are not implemented in 
each concrete Aggregate (you may also 
reuse concrete Iterators)

 Support for more than one traversal of the 
Aggregate: just add Iterator factory 
methods

11

Consequences

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

 Composite: use iterator to traverse the 
composite object structure

 Factory Method: creates the concrete 
iterator

12

Related Patterns

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

13

Chain of Responsibility
I can't handle it, could you please?

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

14

Challenge

 You are implementing the user input 
handler of the GUI widgets
 The widgets have parent-children 

relationships
 If the object can be selected, then the 

object takes the focus and performs the 
action

 If the object cannot be selected, then try to 
select the object's parent

 First attempt: code it using if ... then ...

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

15

 Problem: how can you handle a request in 
a flexible way if multiple objects may take 
responsibility?

 Think: what is the effort if the widgets are 
composed differently? What if some 
widgets are added?

 Target: decouple the request sender and 
handler by chaining the possible handlers 
and passing the request along the chain 
until handled.

Chain of Responsibility

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

16

Structure

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

17

Structure

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

18

 Class Handler defines an interface for 
handling requests

 Class ConcreteHandler handles requests 
or forwards the request that it cannot 
handle to its successor

 Class Client initiates the requests to a 
ConcreteHandler object

Participants

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

19

 Use Chain of Responsibility when
 more than one object may handle a request, 

and the handler is not known a priori.
 you want to issue a request to one of several 

objects without specifying the receiver 
explicitly

 the set of objects that can handle a request 
should be specified dynamically.
 by modifying the chain

Applicability

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

20

Sample Structure

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

21

 Handler: class Widget
 defines the request handling interface
 holds the reference to its successor (parent 

in this case)
 ConcreteHandlers: class TextField, 

Window, Button
 handle or forward the request

 Client

Samples

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

22

 It reduces coupling. The pattern frees the 
client from knowing which handler will 
handle the request.

 It adds flexibility in assigning 
responsibilities to objects. Just modify 
the chain at run-time.

 The receipt is not guaranteed. The 
request can fall of the end of the chain 
without ever being handled.

Consequences

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

23

 Composite: parent node acts as the 
successor

Related Patterns

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

24

Model-View-Controller 
(MVC)

Model

View Controller

set statequery state
change notification

 domain logic or data model

 user interface
 communicates with model
 handles UI events

event notification

modifies view

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

25

Observer
This is my number. Call me when you're available.

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

26

 The user interface should listen to events 
and react to some events
 Some player sends a message
 Your belongings are stolen

 First attempt: poll each events in a big 
event loop
 Polling wastes CPU cycles when there is no 

events
 Spaghetti code of the event loop

Challenge

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

27

 Problem: we want to listen to events that 
we are interested in. How can we do this 
in a flexible way?

 Think: what is the effort if you want to 
add event types or listeners? Is your 
implementation extensible and efficient?

 Target: define a relationship between 
objects so that one (observer) can be 
notified if another (subject) updates.

Observer

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

28

Structure

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

29

Interaction

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

30

 Class Subject knows its observers and 
provides an interface for attaching and 
detaching Observer objects
 A.K.A Publisher, who generates events and 

sends notifications
 Class Observer defines an updating 

interface
 A.K.A. Subscriber, who is interested in the 

events

Participants

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

31

 Class ConcreteSubject stores state and 
sends notifications to observers

 Class ConcreteObserver maintains a 
reference to a ConcreteSubject object; 
stores states; implements the Observer 
updating interface

Participants (Cont'd)

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

32

 Use the Observer pattern when
 an abstraction has two aspects, one 

(observer) dependent on the other (subject).
 a change to one object (subject) requires 

changing others (observers), and you don’t 
know how many objects need to be changed

 an object (subject) should be able to notify 
other objects (observers) without making 
assumptions about who these objects are 
(the observers' classes).

Applicability

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

33

Sample Structure

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

34

 Class Observer
 Class Subject
 Concrete Subject: Class MessageHandler, 

sends/receives messages to/from network
 Concrete Observers: 

MessageDialogController, observes the 
event

Samples

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

35

Model

View Controller

set statequery state
change notification

 domain logic or data model

 user interface
 communicates with model
 handles UI events

event notification

modifies view

MVC and Observer Pattern

Subject Observer

Observer

Subject

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

36

 Abstract coupling between Subject and 
Observer. All a subject knows is that it has 
a list of observers.

 Support for broadcast communication. 
The notification is broadcast automatically 
to all interested observers.

 Unexpected notifications. An innocuous 
operation on the subject may cause all 
registered observers to be updated.

Consequences

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

37

 Mediator: mediator may receive the 
communication from the colleagues using 
the observer pattern

Related Patterns

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

38

Mediator
Would you please transfer the call to Mr. Anderson, please?

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

39

 In your user interface, different widgets 
should act in response to others
 click item button, the item list shows up
 select one friend in the list and detail 

information is displayed accordingly on 
another panel

Challenge

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

40

 First attempt:
 Each widget has references to other widgets 

and checks other widgets for updates
 Worst case: each widget knows about all 

other widgets: O(N^2) complexity of the 
relationships

Challenge (Cont'd)

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

41

 Problem: how can we handle interactions 
between a set of objects in a flexible way?

 Think: what is the effort if you decide to 
add one more widgets to the user 
interface? 

 Target: encapsulate the interaction 
between objects. Objects don't refer to 
one another and interaction can be varied 
independently.

Mediator

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

42

Structure

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

43

Structure

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

44

 Class Mediator defines an interface for 
communicating with Colleague objects
 Often acts as the Controller in the MVC 

design pattern
 Often acts as the Observer in the Observer 

pattern
 Class ConcreteMediator knows and 

maintains its colleagues and implements 
their interactions

Participants

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

45

 Class Colleague knows its Mediator and 
communicates with other colleagues via 
mediator
 Often the View components in the MVC 

pattern
 The Subjects in the Observer pattern

Participants

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

46

 Use the Mediator pattern when
 a set of colleagues communicate in a well-

defined but complex ways.
 reusing a colleague is difficult because it 

refers to and communicates with many other 
objects

 you want to customize some objects' 
behaviors and interactions without a lot of 
subclassing: encapsulate in a mediator 

Applicability

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

47

Sample Structure

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

48

 Mediator: class DialogDirector
 Colleague: class Widget
 Concrete Colleagues: ListBox, TextField, 

Button, and many other GUI components
 Concrete Mediator: MainUIController

 Implementing DialogDirector::CreateWidgets
()

 Implementing DialogDirector::update()
 Observer pattern

Samples

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

49

Model

View Controller

set statequery state
change notification

 domain logic or data model

 user interface
 communicates with model
 handles UI events

event notification

modifies view

MVC and Mediator Pattern

Colleague Mediator

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

50

 It limits subclassing. A mediator localizes 
behavior that otherwise would be 
distributed among several objects.

 It decouples colleagues. Colleagues don't 
have to know one another

 It simplifies object protocols. Many-to-
many interactions between colleges is 
replaced with one-to-many interactions 
between the mediator and its colleagues.

Consequences

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

51

 It abstracts how objects cooperate. 
Mediators separate colleagues' 
interactions from their own behaviors

 It centralizes control. Complexity of 
interaction is centralized in the mediator.

Consequences

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

52

 Facade: facade provides the interface of 
the subsystem to the outer world. It's 
one-way communication. Mediator 
facilitates two-way communications 
between colleagues.

 Observer: colleagues communicate with 
the mediator using the Observer pattern

Related Patterns

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

53

Command
This is an order, effective on next Monday.

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

54

 We want to customize the behaviors of the 
reusable widgets
 Add a new user when “buy item” button is 

pushed
 We have “sell item”, “drop item” and many 

more widgets performing different actions
 Widget classes don't know anything about 

the action, but has to execute it
 perform the action when the button is pushed

 First attempt: subclassing the widgets

Challenge

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

55

 Problem: how can we define actions that 
can be invoked by other objects at later 
times

 Think: is subclassing flexible? What if you 
have many actions to perform or you are 
not allowed to subclass the invokers?

 Target: encapsulate actions as objects 
such that the actions can be passed to 
invokers, be queued and invoked later, 
and be undone

Command

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

56

Structure

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

57

Interaction

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

58

 Class Command declares an interface for 
executing an operation.

 Class ConcreteCommand defines a 
binding between a Receiver object and an 
action; implements Execute by invoking 
the corresponding operations on Receiver
 note that there hasn't to be only one receiver 

used in a command
 a receiver isn't always necessary for a 

command to execute, either

Participants

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

59

 Class Client creates a ConcreteCommand 
object and sets its receiver

 Class Invoker asks the command to carry 
out the request

 Class Receiver knows how to perform the 
operations

Participants (Cont'd)

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

60

 Use the Command pattern when
 to parameterize objects (e.g. widgets) with 

an action (command) to perform.
 instead of subclassing
 specify, queue and execute requests at 

different times.
 support undo.
 support macro commands (commands 

composed of other commands)

Applicability

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

61

Sample Structure

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

62

 Command: class Command
 defines the interface

 ConcreteCommand: class 
AddUserCommand
 implements execute()

 Receiver: class UserManager
 who receives the command

 Client: class Client
 creates the command
 associates the command with the receiver

Samples

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

63

 Invoker: class AddUserButton
 who triggers the execution of the command
 e.g. user pushed the button

 Composite Command: class 
MacroCommand
 the composite pattern
 is composed of other commands

Samples (Cont'd)

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

64

Model

View Controller

set statequery state
change notification

 domain logic or data model

 user interface
 communicates with model
 handles UI events

event notification

modifies view

MVC and Mediator Pattern

Invoker

Command
Receiver

Invoker

Command

Receiver

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

65

 It decouples the invoker from the receiver.
 Commands are first-class objects. They 

can be assembled into a composite 
(macro) command.

 They can be extended easily.

Consequences

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

66

 Composite: used to implement 
MacroCommands

 Memento: used to remember the state the 
command requires for undoing the 
operation

 Prototype: cloning a command before 
putting on the command history list

Related Patterns

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

67

Template Method
Fill the blanks.

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

68

 Validating user account on registration
 check registered account ID
 validate address, phone number in multiple 

countries
 validate credit card

 First attempt: one concrete validator for 
each country. Each validator performs all 
validations.
 some logic are the same for all countries and 

can be shared

Challenge

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

69

 Problem: how can we do both code reuse 
and customization of one algorithm?

 Think: how much code is redundant in the 
big validation method? What is the effort 
to change the validation logic?

 Target: define the skeleton of an 
algorithm in an operation and defer some 
steps to subclasses.

Template Method

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

70

Structure

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

71

 Class AbstractClass defines abstract 
primitive operations (steps) of an 
algorithm; implements a template method 
defining the skeleton of an algorithm.

 Class ConcreteClass implements the 
primitive operations.

Participants

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

72

 The Template Method pattern should be 
used
 to implement the invariant parts of an 

algorithm once and leave it up to subclasses 
to implement the behavior that can vary.

 when common behavior among subclasses 
should be factored and localized in a 
common class to avoid code duplication.

 to control subclasses extensions. Extensions 
are permitted in implementations of 
primitive operations.

Applicability

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

73

Sample Structure

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

74

 AbstractClass: class UserValidator
 ConcreteClass:

 class TaiwauUserValidator and 
USUserValidator 

Samples

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

75

 The Hollywood principle. Don’t call us, 
we’ll call you.
 why calling from parent class?

 Template methods call the following kinds 
of operations:
 concrete operations
 concrete AbstractClass operations
 primitive operations
 factory methods
 hook operations

Consequences

Saturday, November 14, 2009



Software Development Methods, Fall 2009 Behavioral Patterns [2009/10/29] 

76

 Factory Method: often acts as the 
primitive operation that is called by a 
template method

 Strategy: template method varies part of 
the algorithm via inheritance. Strategy 
delegates the entire algorithm to another 
object.

Related Patterns

Saturday, November 14, 2009


