
Creational Patterns

Creational Patterns Introduction

¨ Creational design patterns abstract the instantiation
process.

¨ They help make a system independent of how its
objects are created, composed, and represented
¤ They all encapsulate knowledge about which concrete

classes the system uses
¤ They hide how instances of these classes are created

and put together

Creational Patterns

¨ Abstract Factory
¨ Builder
¨ Factory Method
¨ Prototype
¨ Singleton

Factory Method

Challenge

¨ There are many kinds of houses in the game. Each
of them have different looking.

JungleHouse

BeachHouse

House

First Attempt

¤ use if-else to check which kind of house player is
setting and then generate the object.

if (House == “JungleHouse”){
// processes to generate JungleHouse
return JungleHouse;

}
else if (House == “BeachHouse”){

// process to generate BeachHouse
return BeachHouse;

}

Factory Method

¨ Problem: We need to generate one kind of class
(abstract class), but each concrete classes need
different implementation.

¨ Think: what's the effort if you want to add or
delete some types?

¨ Target: Define an interface for creating an object,
but let subclasses decide which class to instantiate.
Factory Method lets a class defer instantiation to
subclasses.

Structure

Product
defines the interface of objects
created by factory method

Creator
declares the factory method
returning an object of type Product

ConcreteProduct
implements the Product interface

ConcreteCreator
overrides the factory method to return
an instance of a ConcreteProduct

Participants

¨ Class Product defines the interface of objects
created by factory method.

¨ Class ConcreteProduct implements the Product
interface.

¨ Class Creator declares the factory method
returning an object of type Product.

¨ Class ConcreteCreator overrides the factory
method to return an instance of a ConcreteProduct.

Interactions between Participants

1. Client calls Creator’s factory method
2. ConcreteCreator implements Creator interfaces,

so it will be ConcreteCreator to perform factory
method

3. ConcreteCreator generates and returns
ConcreteProduct in factory method

4. Client calls Product’s function
5. ConcreteProduct implements Product interfaces,

so Client’s call will actually performed by
ConcreteProduct

Interaction Flow

1

2
3

ConcreteCreator

Creator

factoryMethod()

4

ConcreteProduct

Product

function()
5

Applicability

¨ Use the Factory Method pattern when
¤ a class cannot anticipate the class of objects it must

create.
¤ a class wants its subclasses to specify the objects it

creates.
¤ classes delegate responsibility to one of several

helper subclasses, and you want to localize the
knowledge of which helper subclass is the delegate.

Consequences

¨ It eliminates the need to bind application-
specific classes in your code. The code only deals
with Product interface.

¨ It provides hooks for subclasses. Factory
Method gives subclasses a hook for providing an
extended version of an object. .

Apply Factory Method Pattern

JungleHouseJungleHouseCreator

BeachHouse

House

BeachHouseCreator

HouseCreator

(ConcreteCreatorB)

(ConcreteCreatorA)

(Creator)

(ConcretetProductA)

(ConcreteProductB)

(Product)

Structure of Sample

Sample Code Flow

¨ Target: Generate JungleHouse and perform showMyself()
1. main() calls HouseCreator’s createHouse() method to generate

House
2. JungleHouseCreator implements HouseCreator interfaces, so

it will be JungleHouseCreator to perform createHouse()
3. JungleHouseCreator generates JungleHouse using its own

implementation in createHouse(). Then, return JungleHouse
4. Client calls House’s showMyself() function
5. JungleHouse implements House’s interfaces, so Client’s call

will actually performed by JungleHouse’s ()

Related Patterns

¨ Abstract Factory is often implemented with
factory methods

¨ Factory methods are usually called within
Template Methods

Abstract Factory

Challenge

¨ There are many decorations to setup a farm and
each decoration have some “functions”. There are
many different styles of decorations and the
function of decoration will vary accordingly.

¨ The fence of different decoration style has
different protection way

JungleFenceJungleHouseJungle

BeachFenceBeachHouseBeach

FenceHouseDecoration Style
Family of Products

First Attempt

¤ use if-else statement to cover all possible style and in
each style, we new all kinds of decorations.

if (DecorationStyle == “Jungle”){
if (Decoration == “House”){

return JungleHouse;
}
else if (Decoration = “Fence”){

return JungleFence;
}

}
else if (DecorationStyle == “Beach”){

…
}

Abstract Factory

¨ Problem: We need to support multiple families of
products. How can clients manipulate those
products without know which family they
generate?

¨ Think: what's the effort if we need to add one
more family of products.

¨ Target: Provide an interface for creating families
of related or dependent objects without specifying
their concrete classes.

Structure
Abstract Factory
declares an interface for creating product objects

Concrete Factory
implements the interface

Client
uses only the interface defined by
AbstractFactory and AbstractProduct

Concrete Product
defines a product object

Abstract Product
declares an interface for product objects

Participants

¨ Class AbstractFactory declares an interface for
creating product objects;

¨ Class ConcreteFactory implements the interface;
¨ Class AbstractProduct declares an interface for

product objects;
¨ Class ConcreteProduct de?nes a product object;
¨ Class Client uses only the interface de?ned by

AbstractFactory and AbstractProduct

Interactions between Participants

1. Client calls interfaces of AbstractFactory
2. ConcreteFactory implements AbstractFactory

interfaces, so Client’s call will actually
performed by ConcreteFactory

3. ConcreteFactory generates ConcreteProducts
of this family as a result of Client’s call

4. Client calls interfaces of AbstractProduct
5. ConcreteProduct implements AbstractProduct

interfaces, so Client’s call will actually
performed by ConcreteProduct

Interaction Flow

Client

1

2 ConcreteProductA

AbstractProductA

performFunction()3

ConcreteFactory

AbstractFactory

createProductA()
createProductB()

… …

4

5

Applicability

¨ Use the Abstract Factory pattern when
¤ a system should be independent of how its products

are created, composed, and represented.
¤ a system should be configured with one of multiple

families of products.
¤ a family of related product objects is designed to be

used together, and you need to enforce this
constraint.

¤ you want to provide a class library of products, and
you want to reveal just their interfaces, not
implementations.

Consequences

¨ It isolates concrete classes. Clients manipulate
instances via their abstract interfaces.

¨ It makes exchanging product families easy. The
class of a concrete factory appears only when it is
instantiated.

¨ It promotes consistency among products. It is
enforced in concrete factories.

¨ Supporting new kinds of products is difficult.
AbstractFactory interface fixes the set of products
that can be created.

Apply Abstract Factory Pattern

Beach

Jungle

Decoration
Style

Beach-
Factory

Jungle-
Factory

Decoration-
Factory

JungleFenceJungleHouse

BeachFenceBeachHouse

Fence House

(ConcreteProductB1)(ConcreteProductA1)(ConcreteFactory1)

(ConcreteProductB2)(ConcreteProductA2)(ConcreteFactory2)

(AbstractProductB)(AbstractProductA)(AbstractFactory)

Structure of Sample

Sample Code Flow

¨ Target: Generate Jungle Style Environment
1. Assign JungleFactory to Environment
2. Environment calls interfaces of

DecorationFactory to generate House and Fence
3. JungleFactory is the one really being called and

generate JungleHouse and JungleFence
4. Environment calls interfaces of House or Fence
5. JungleHouse or JungleFence is really called and

performs functions

Related Patterns

¨ AbstractFactory classes are often implemented with
factory methods Factory Method, but they can
also be implemented using Prototype

¨ A concrete factory is often a Singleton

Singleton

Challenge

¨ We need a clock for each player for them to
calculate their time staying in our game.

First Attempt

¤ generate a clock object for each player

getClock() {
return new Clock();

}

Singleton

¨ Problem: The class only need one instance in our
system.

¨ Think: Is the resource wasted on no necessary
duplication object?

¨ Target: Ensure a class only has one instance, and
provide a global point of access to it.

Structure

Singleton
defines a static member function that
lets clients access its unique instance

Participants

¨ Class Singleton defines a static member function
that lets clients access its unique instance.

Applicability

¨ Use the Singleton pattern when
¤ there must be exactly one instance of a class, and it

must be accessible to clients from a well-known
access point.

Consequences

¨ Controlled access to sole instance. Singleton has
strict control over how and when clients access it.

¨ Reduced name space. It is an improvement over
global variable.

¨ Permits a variable number of instances. It is
easy to modify the pattern in case you need more
than one instances.

¨ More flexible than class operations. It is also
possible to use static member function to keep the
instance. But it would be hard to change the
design.

Structure of Sample

Sample Code Flow

¨ Target: Get Clock instance
1. main() calls Clock.getInstance() to get the unique

instance of Clock
2. main() calls other method of Clock

Related Patterns

¨ Many patterns can be implemented using the
Singleton pattern. See Abstract Factory, Builder,
and Prototype

