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Why structural patterns

A better way for different entities to work 
together
  
Focus on higher level interface 
composition and integration.  

Particularly useful for making 
independently developed libraries to work 
together
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Core Spirits

3

High Cohesion, Loose Coupling
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Outline of structural patterns

Composite

Decorator

Adapter

Bridge

Proxy

facadeflyweight
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Provide a surrogate or placeholder for another object to control access to it. 

Proxy Pattern
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Challenge

 Authentication process is quite slow. Is 
there any way to improve its 
performance ?

 Can we make the enhancement 
transparent to existing clients ?
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Problem

 You want to add a middle-layer between 
clients and your system.
 Access control
 Performance enhancement

 The implementation must be transparent to 
existing user
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Think …
 How to implement the access control?
 Can you do something before client program 

accesses your resource 

 Target:
 A proxy that can be act as a gate-keeper of 

existing resource  
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Structure/Participants

Object Relationship
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Applicability

 Uses of Proxy pattern
 Remote proxy
 Virtual image proxy
 Protection proxy
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Sample Structure
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Consequence
 Indirect access of resources

 You can always monitor/filter the access 
request

 Resource control optimization
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Related Patterns
 Decorator

 Proxy focus on resource control instead of 
adding features to existing component 
dynamically
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Attach additional responsibilities to an object dynamically

Decorator Pattern
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Challenge

 The basic access control system has been 
implemented, but we need to come up with a 
general approach so that we can add new 
features dynamically… 
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Problem

 You need to attach/detach features 
dynamically

 You can't implement various combinations of 
feature by using subclasses 
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Think…

 How to add/remove new feature to an 
“object” dynamically? 

 Instead of subclassing, are there any other 
alternatives?

 Target:
 Dynamic feature composition. 
 Chain of responsibility.  

Friday, October 30, 2009



Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Structure/Participants
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Applicability

 Use Decorator pattern
 When you want to associate a new feature to 

an existing object “dynamically” and 
“transparently”

 When subclassing is impractical
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Implementation
 Minimize the operation exposed by 

“component”
 Change skin (decorator) V.S change 

guts (strategy)
 Transparency
 Controllability
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Sample Structure
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Consequence
 More flexible than subclassing
 Avoid feature-overloaded parent class
 Minimize the impact of adding new 

nodes
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Related Patterns
 Composite

 Structurally similar, but decorator allow 
adding new feature (responsibility)

 Strategy
 Change skin V.S change guts

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Compose objects into tree structures to represent part-whole hierarchies

Composite Pattern
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Problem

 Implement a nested structure for various 
objects (e.g. team/subteam relationship)

 The interface needs to be unified so that 
you don't need to worry about which object 
you are currently dealing with 
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First Attempt

 Implement classes to represent root 
node/intermediate note/child node 
separately 

 Each kind of node has different interface 
to reflect its role/responsibility
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Think…

 How to represent a tree-like/recursive 
structure in your code?

 Target:
 Leverage the beauty of recursive
 Apply your changes (commands) to the 

system as a whole 

Friday, October 30, 2009



Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Structure/Participants
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Applicability

 Use Composite pattern
 When you need to represent a nested, whole-

part relation
 You want to provide a uniform interface for 

each node in the system
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Implementation

 Reference to parent

 Focus on node manipulation methods
 Transparency v.s strong type checking

 Relative order between nodes
 Leverage Iterator/visitor pattern 
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Sample Scenario

JeffreyCleme
ntJim

Bob

 You want to build up a structure that can 
represent team/subteam/member 
relationship

 You want an action to apply to all members 
( e.g. broadcast)
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Sample Structure
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Consequence

 A recursive structure that has no clear 
line between composite nodes and leaf 
nodes

 Reduce client's knowledge about internal 
structure

 Minimize the impact of adding new nodes

Friday, October 30, 2009



Software Development Methods, Fall 2009 Structural Patterns [2009/10/29] 

Related Patterns
 Decorator

 Often used with composite pattern. It 
implements the same interface of composite 
so both patterns can be seamlessly 
integrated

 Iterator
 Support various of ways to traverse the 

nested structure
 Visitor

 Move a specific operation to a visitor instead 
of complicating the general composite 
interface
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Provide a unified high-level interface to a set of interfaces in a subsystem

Facade Pattern

Friday, October 30, 2009



Software Development Methods, Fall 2009 Structural Patterns [2009/10/29] 

Challenge

 There are a lot of fine-grained components 
in our system. Does that mean our client 
needs to deal with these details?

 Also, someone already proposed an 
enhancement request for one particular 
component, which means the component is 
subject to be changed. How to make this 
change transparent to client in the future ?
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Problem

 Each sub-system has its own unique class 
hierarchy, programming conventions, and 
usage caveats

  You don't want to have strong binding with a 
particular class which is subject to be changed
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Think …

 How to encapsulate internal details and 
provide a high-level interface to other sub-
systems?  

 How do you set up the interface contract 
appropriately ?

 Target:
 Implement a class whose exposed methods 

can represent the essential functions of the 
whole system
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Structure/Participants
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Applicability

 Use Facade pattern
 When the interface of the class in the sub-

system are too complicated to follow
 When using top-down approach
 Reduce class dependency
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Sample Scenario

 You want to expose various functions of 
you subsystem
 Membership management
 Access Control
 Team-based operations
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Sample Structure
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Consequence

 Make sub-system easy to use
 Reduce code dependency among sub-

systems
 Design by contract, then stick with the 

contract
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Related Patterns
 Singleton

 You only need one facade instance most of the 
time

 Mediator
 Façade and mediator both abstract the 

functionality of existing classes
 Mediator focus on how to abstract the way 

arbitrary classes communicate with each other 
 Proxy 

 The gateway between internal and external 
system
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Structural patterns review

 Use Proxy pattern to serve as a middle 
layer between two components

 Use decorator pattern when you want to 
attach/detach features with existing 
component dynamically 
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Structural patterns review 

 Use Composite pattern to represent 
nested structure in a flexible way

 Use Façade pattern to provide a higher 
level of abstraction of your subsystem 
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