
Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Structural Patterns

Jeffrey Liu

IBM
China Development Lab

Greater China Group

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Why structural patterns

A better way for different entities to work
together

Focus on higher level interface
composition and integration.

Particularly useful for making
independently developed libraries to work
together

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Core Spirits

3

High Cohesion, Loose Coupling

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Outline of structural patterns

Composite

Decorator

Adapter

Bridge

Proxy

facadeflyweight

Friday, October 30, 2009

Provide a surrogate or placeholder for another object to control access to it.

Proxy Pattern

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Challenge

 Authentication process is quite slow. Is
there any way to improve its
performance ?

 Can we make the enhancement
transparent to existing clients ?

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Problem

 You want to add a middle-layer between
clients and your system.
 Access control
 Performance enhancement

 The implementation must be transparent to
existing user

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Think …
 How to implement the access control?
 Can you do something before client program

accesses your resource

 Target:
 A proxy that can be act as a gate-keeper of

existing resource

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Structure/Participants

Object Relationship

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Applicability

 Uses of Proxy pattern
 Remote proxy
 Virtual image proxy
 Protection proxy

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Sample Structure

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Consequence
 Indirect access of resources

 You can always monitor/filter the access
request

 Resource control optimization

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Related Patterns
 Decorator

 Proxy focus on resource control instead of
adding features to existing component
dynamically

Friday, October 30, 2009

Attach additional responsibilities to an object dynamically

Decorator Pattern

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Challenge

 The basic access control system has been
implemented, but we need to come up with a
general approach so that we can add new
features dynamically…

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Problem

 You need to attach/detach features
dynamically

 You can't implement various combinations of
feature by using subclasses

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Think…

 How to add/remove new feature to an
“object” dynamically?

 Instead of subclassing, are there any other
alternatives?

 Target:
 Dynamic feature composition.
 Chain of responsibility.

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Structure/Participants

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Applicability

 Use Decorator pattern
 When you want to associate a new feature to

an existing object “dynamically” and
“transparently”

 When subclassing is impractical

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Implementation
 Minimize the operation exposed by

“component”
 Change skin (decorator) V.S change

guts (strategy)
 Transparency
 Controllability

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Sample Structure

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Consequence
 More flexible than subclassing
 Avoid feature-overloaded parent class
 Minimize the impact of adding new

nodes

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Related Patterns
 Composite

 Structurally similar, but decorator allow
adding new feature (responsibility)

 Strategy
 Change skin V.S change guts

Friday, October 30, 2009

Compose objects into tree structures to represent part-whole hierarchies

Composite Pattern

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Problem

 Implement a nested structure for various
objects (e.g. team/subteam relationship)

 The interface needs to be unified so that
you don't need to worry about which object
you are currently dealing with

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

First Attempt

 Implement classes to represent root
node/intermediate note/child node
separately

 Each kind of node has different interface
to reflect its role/responsibility

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Think…

 How to represent a tree-like/recursive
structure in your code?

 Target:
 Leverage the beauty of recursive
 Apply your changes (commands) to the

system as a whole

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Structure/Participants

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Applicability

 Use Composite pattern
 When you need to represent a nested, whole-

part relation
 You want to provide a uniform interface for

each node in the system

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Implementation

 Reference to parent

 Focus on node manipulation methods
 Transparency v.s strong type checking

 Relative order between nodes
 Leverage Iterator/visitor pattern

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Sample Scenario

JeffreyCleme
ntJim

Bob

 You want to build up a structure that can
represent team/subteam/member
relationship

 You want an action to apply to all members
(e.g. broadcast)

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Sample Structure

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Consequence

 A recursive structure that has no clear
line between composite nodes and leaf
nodes

 Reduce client's knowledge about internal
structure

 Minimize the impact of adding new nodes

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Related Patterns
 Decorator

 Often used with composite pattern. It
implements the same interface of composite
so both patterns can be seamlessly
integrated

 Iterator
 Support various of ways to traverse the

nested structure
 Visitor

 Move a specific operation to a visitor instead
of complicating the general composite
interface

Friday, October 30, 2009

Provide a unified high-level interface to a set of interfaces in a subsystem

Facade Pattern

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Challenge

 There are a lot of fine-grained components
in our system. Does that mean our client
needs to deal with these details?

 Also, someone already proposed an
enhancement request for one particular
component, which means the component is
subject to be changed. How to make this
change transparent to client in the future ?

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Problem

 Each sub-system has its own unique class
hierarchy, programming conventions, and
usage caveats

 You don't want to have strong binding with a
particular class which is subject to be changed

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Think …

 How to encapsulate internal details and
provide a high-level interface to other sub-
systems?

 How do you set up the interface contract
appropriately ?

 Target:
 Implement a class whose exposed methods

can represent the essential functions of the
whole system

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Structure/Participants

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Applicability

 Use Facade pattern
 When the interface of the class in the sub-

system are too complicated to follow
 When using top-down approach
 Reduce class dependency

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Sample Scenario

 You want to expose various functions of
you subsystem
 Membership management
 Access Control
 Team-based operations

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Sample Structure

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Consequence

 Make sub-system easy to use
 Reduce code dependency among sub-

systems
 Design by contract, then stick with the

contract

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Related Patterns
 Singleton

 You only need one facade instance most of the
time

 Mediator
 Façade and mediator both abstract the

functionality of existing classes
 Mediator focus on how to abstract the way

arbitrary classes communicate with each other
 Proxy

 The gateway between internal and external
system

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Structural patterns review

 Use Proxy pattern to serve as a middle
layer between two components

 Use decorator pattern when you want to
attach/detach features with existing
component dynamically

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Structural patterns review

 Use Composite pattern to represent
nested structure in a flexible way

 Use Façade pattern to provide a higher
level of abstraction of your subsystem

Friday, October 30, 2009

