
Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Structural Patterns

Jeffrey Liu

IBM
China Development Lab

Greater China Group

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Why structural patterns

A better way for different entities to work
together

Focus on higher level interface
composition and integration.

Particularly useful for making
independently developed libraries to work
together

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Core Spirits

3

High Cohesion, Loose Coupling

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Outline of structural patterns

Composite

Decorator

Adapter

Bridge

Proxy

facadeflyweight

Friday, October 30, 2009

Provide a surrogate or placeholder for another object to control access to it.

Proxy Pattern

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Challenge

 Authentication process is quite slow. Is
there any way to improve its
performance ?

 Can we make the enhancement
transparent to existing clients ?

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Problem

 You want to add a middle-layer between
clients and your system.
 Access control
 Performance enhancement

 The implementation must be transparent to
existing user

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Think …
 How to implement the access control?
 Can you do something before client program

accesses your resource

 Target:
 A proxy that can be act as a gate-keeper of

existing resource

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Structure/Participants

Object Relationship

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Applicability

 Uses of Proxy pattern
 Remote proxy
 Virtual image proxy
 Protection proxy

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Sample Structure

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Consequence
 Indirect access of resources

 You can always monitor/filter the access
request

 Resource control optimization

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Related Patterns
 Decorator

 Proxy focus on resource control instead of
adding features to existing component
dynamically

Friday, October 30, 2009

Attach additional responsibilities to an object dynamically

Decorator Pattern

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Challenge

 The basic access control system has been
implemented, but we need to come up with a
general approach so that we can add new
features dynamically…

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Problem

 You need to attach/detach features
dynamically

 You can't implement various combinations of
feature by using subclasses

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Think…

 How to add/remove new feature to an
“object” dynamically?

 Instead of subclassing, are there any other
alternatives?

 Target:
 Dynamic feature composition.
 Chain of responsibility.

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Structure/Participants

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Applicability

 Use Decorator pattern
 When you want to associate a new feature to

an existing object “dynamically” and
“transparently”

 When subclassing is impractical

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Implementation
 Minimize the operation exposed by

“component”
 Change skin (decorator) V.S change

guts (strategy)
 Transparency
 Controllability

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Sample Structure

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Consequence
 More flexible than subclassing
 Avoid feature-overloaded parent class
 Minimize the impact of adding new

nodes

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Related Patterns
 Composite

 Structurally similar, but decorator allow
adding new feature (responsibility)

 Strategy
 Change skin V.S change guts


Friday, October 30, 2009

Compose objects into tree structures to represent part-whole hierarchies

Composite Pattern

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Problem

 Implement a nested structure for various
objects (e.g. team/subteam relationship)

 The interface needs to be unified so that
you don't need to worry about which object
you are currently dealing with

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

First Attempt

 Implement classes to represent root
node/intermediate note/child node
separately

 Each kind of node has different interface
to reflect its role/responsibility

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Think…

 How to represent a tree-like/recursive
structure in your code?

 Target:
 Leverage the beauty of recursive
 Apply your changes (commands) to the

system as a whole

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Structure/Participants

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Applicability

 Use Composite pattern
 When you need to represent a nested, whole-

part relation
 You want to provide a uniform interface for

each node in the system

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Implementation

 Reference to parent

 Focus on node manipulation methods
 Transparency v.s strong type checking

 Relative order between nodes
 Leverage Iterator/visitor pattern

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Sample Scenario

JeffreyCleme
ntJim

Bob

 You want to build up a structure that can
represent team/subteam/member
relationship

 You want an action to apply to all members
(e.g. broadcast)

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Sample Structure

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Consequence

 A recursive structure that has no clear
line between composite nodes and leaf
nodes

 Reduce client's knowledge about internal
structure

 Minimize the impact of adding new nodes

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Related Patterns
 Decorator

 Often used with composite pattern. It
implements the same interface of composite
so both patterns can be seamlessly
integrated

 Iterator
 Support various of ways to traverse the

nested structure
 Visitor

 Move a specific operation to a visitor instead
of complicating the general composite
interface

Friday, October 30, 2009

Provide a unified high-level interface to a set of interfaces in a subsystem

Facade Pattern

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Challenge

 There are a lot of fine-grained components
in our system. Does that mean our client
needs to deal with these details?

 Also, someone already proposed an
enhancement request for one particular
component, which means the component is
subject to be changed. How to make this
change transparent to client in the future ?

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Problem

 Each sub-system has its own unique class
hierarchy, programming conventions, and
usage caveats

 You don't want to have strong binding with a
particular class which is subject to be changed

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Think …

 How to encapsulate internal details and
provide a high-level interface to other sub-
systems?

 How do you set up the interface contract
appropriately ?

 Target:
 Implement a class whose exposed methods

can represent the essential functions of the
whole system

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Structure/Participants

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Applicability

 Use Facade pattern
 When the interface of the class in the sub-

system are too complicated to follow
 When using top-down approach
 Reduce class dependency

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Sample Scenario

 You want to expose various functions of
you subsystem
 Membership management
 Access Control
 Team-based operations

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Sample Structure

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Consequence

 Make sub-system easy to use
 Reduce code dependency among sub-

systems
 Design by contract, then stick with the

contract

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Related Patterns
 Singleton

 You only need one facade instance most of the
time

 Mediator
 Façade and mediator both abstract the

functionality of existing classes
 Mediator focus on how to abstract the way

arbitrary classes communicate with each other
 Proxy

 The gateway between internal and external
system

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Structural patterns review

 Use Proxy pattern to serve as a middle
layer between two components

 Use decorator pattern when you want to
attach/detach features with existing
component dynamically

Friday, October 30, 2009

Software Development Methods, Fall 2009 Structural Patterns [2009/10/29]

Structural patterns review

 Use Composite pattern to represent
nested structure in a flexible way

 Use Façade pattern to provide a higher
level of abstraction of your subsystem

Friday, October 30, 2009

