
IM NTU

Program Correctness:
Hoare Logic

(Based on [Apt and Olderog 1991; Gries 1981;
Hoare 1969; Kleymann 1999; Sethi 1996])

Yih-Kuen Tsay

Dept. of Information Management

National Taiwan University

Software Development Methods, Fall 2009: Hoare Logic – 1/33



IM NTU

An Axiomatic View of Programs

The properties of a program can, in principle, be found
out from its text by means of purely deductive
reasoning.

The deductive reasoning involves the application of
valid inference rules to a set of valid axioms.

The choice of axioms will depend on the choice of
programming languages.

We shall introduce such an axiomatic approach, called
the Hoare logic, to program correctness.

Software Development Methods, Fall 2009: Hoare Logic – 2/33



IM NTU

Assertions

When executed, a program will evolve through different
states, which are essentially a mapping of the program
variables to values in their respective domains.

To reason about correctness of a program, we inevitably
need to talk about its states.

An assertion is a precise statement about the state of a
program.

Most interesting assertions can be expressed in a
first-order language.

Software Development Methods, Fall 2009: Hoare Logic – 3/33



IM NTU

Pre and Post-conditions

The behavior of a “structured” (single-entry/single-exit)
program statement can be characterized by attaching
assertions at the entry and the exit of the statement.

For a statement S, this is conveniently expressed as a
so-called Hoare triple, denoted {P} S {Q}, where

P is called the pre-condition and
Q is called the post-condition of S.

Software Development Methods, Fall 2009: Hoare Logic – 4/33



IM NTU

Interpretations of a Hoare Triple

A Hoare triple {P} S {Q} may be interpreted in two
different ways:

Partial Correctness : if the execution of S starts in a
state satisfying P and terminates, then it results in a
state satisfying Q.
Total Correctness : if the execution of S starts in a
state satisfying P , then it will terminate and result in
a state satisfying Q.

Note: sometimes we write 〈P 〉 S 〈Q〉 when total correctness
is intended.

Software Development Methods, Fall 2009: Hoare Logic – 5/33



IM NTU

Pre and Post-Conditions for Specification

Find an integer approximate to the square root of
another integer n:

{0 ≤ n} ? {d2 ≤ n < (d + 1)2}

or slightly better (clearer about what can be changed)

{0 ≤ n} d := ? {d2 ≤ n < (d + 1)2}

Find the index of value x in an array b:
{x ∈ b[0..n − 1]} ? {0 ≤ i < n ∧ x = b[i]}

{0 ≤ n} ? {(0 ≤ i < n∧x = b[i])∨ (i = n∧x 6∈ b[0..n− 1])}

Note: there are other ways to stipulate which variables are
to be changed and which are not.

Software Development Methods, Fall 2009: Hoare Logic – 6/33



IM NTU

A Little Bit of History

The following seminal paper started it all:

C.A.R. Hoare. An axiomatic basis for computer
programs. CACM, 12(8):576-580, 1969.

Original notation: P {S} Q (vs. {P} S {Q})

Interpretation: partial correctness

Provided axioms and proof rules

Note: R.W. Floyd did something similar for flowcharts
earlier in 1967, which was also a precursor of “proof
outline” (a program fully annotated with assertions).

Software Development Methods, Fall 2009: Hoare Logic – 7/33



IM NTU

The Assignment Statement

Syntax:
x := E

Meaning: execution of the assignment x := E (read as
“x becomes E”) evaluates E and stores the result in
variable x.

We will assume that expression E in x := E has no
side-effect (i.e., does not change the value of any
variable).

Which of the following two Hoare triples is correct about
the assignment x := E?

{P} x := E {P [E/x]}

{Q[E/x]} x := E {Q}

Note: E is essentially a first-order term.

Software Development Methods, Fall 2009: Hoare Logic – 8/33



IM NTU

Some Hoare Triples for Assignments

{x > 0} x := x − 1 {x ≥ 0}
or equivalently, {x − 1 ≥ 0} x := x − 1 {x ≥ 0}

{x + 1 > 5} x := x + 1 {x > 5}

{5 6= 5} x := 5 {x 6= 5}

Software Development Methods, Fall 2009: Hoare Logic – 9/33



IM NTU

Axiom of the Assignment Statement

(Assignment)
{Q[E/x]} x := E {Q}

Why is this so?

Let s be the state before x := E and s′ the state after.

So, s′ = s[x := E] assuming E has no side-effect.

Q[E/x] holds in s if and only if Q holds in s′, because
every variable, except x, in Q[E/x] and Q has the
same value in s and s′, and
Q[E/x] has every x in Q replaced by E, while Q has
every x evaluated to E in s′ (= s[x := E]).

Software Development Methods, Fall 2009: Hoare Logic – 10/33



IM NTU

The Multiple Assignment Statement

Syntax:
x1, x2, · · · , xn := E1, E2, · · · , En

where xi’s are distinct variables.

Meaning: execution of the multiple assignment
evaluates all Ei’s and stores the results in the
corresponding variables xi’s.

Examples:
i, j := 0, 0 (initialize i and j to 0)
x, y := y, x (swap x and y)
g, p := g + 1, p− 1 (increment g by 1, while decrement p
by 1)
i, x := i + 1, x + i (increment i by 1 and x by i)

Software Development Methods, Fall 2009: Hoare Logic – 11/33



IM NTU

Some Hoare Triples for Multi-assignments

Swapping two values
{x < y} x, y := y, x {y < x}

Number of games in a tournament
{g + p = n} g, p := g + 1, p − 1 {g + p = n}

Taking a sum
{x + i = 1 + 2 + · · · + (i + 1 − 1)}

i, x := i + 1, x + i

{x = 1 + 2 + · · · + (i − 1)}

Software Development Methods, Fall 2009: Hoare Logic – 12/33



IM NTU

Simultaneous Substitution

P [E/x] can be naturally extended to allow E to be a list
E1, E2, · · · , En and x to be x1, x2, · · · , xn, all of which are
distinct variables.

P [E/x] is then the result of simultaneously replaying
x1, x2, · · · , xn with the corresponding expressions
E1, E2, · · · , En; enclose Ei’s in parentheses if necessary.

Examples:
(x < y)[y, x/x, y] = (y < x)

(g + p = n)[g + 1, p − 1/g, p] = ((g + 1) + (p − 1) = n) =
(g + p = n)

(x = 1 + 2 + · · · + (i − 1))[i + 1, x + i/i, x]
= ((x + i) = 1 + 2 + · · · + ((i + 1) − 1))
= (x + i = 1 + 2 + · · · + ((i + 1) − 1))

Software Development Methods, Fall 2009: Hoare Logic – 13/33



IM NTU

Axiom of the Multiple Assignment

Syntax:
x1, x2, · · · , xn := E1, E2, · · · , En

where xi’s are distinct variables.

Axiom:

(Assign.)
{Q[E1, · · · , En/x1, · · · , xn]} x1, · · · , xn := E1, · · · , En {Q}

Software Development Methods, Fall 2009: Hoare Logic – 14/33



IM NTU

Assignment to an Array Entry

Syntax:
b[i] := E

Notation for an altered array: (b; i : E) denotes the array
that is identical to b, except that entry i stores the value
of E.

(b; i : E)[j] =







E if i = j

b[j] if i 6= j

Axiom:

(Assignment)
{Q[(b; i : E)/b]} b[i] := E {Q}

Software Development Methods, Fall 2009: Hoare Logic – 15/33



IM NTU

Pre and Post-condition of a Loop

A precondition just before a loop can capture the
conditions for executing the loop.

An assertion just within a loop body can capture the
conditions for staying in the loop.

A postcondition just after a loop can capture the
conditions upon leaving the loop.

Software Development Methods, Fall 2009: Hoare Logic – 16/33



IM NTU

A Simple Example

{x ≥ 0 ∧ y > 0}
while x ≥ y do

{x ≥ 0 ∧ y > 0 ∧ x ≥ y}
x := x − y

od
{x ≥ 0 ∧ y > 0 ∧ x 6≥ y}
// or
{x ≥ 0 ∧ y > 0 ∧ x < y}

Software Development Methods, Fall 2009: Hoare Logic – 17/33



IM NTU

More about the Example

We can say more about the program.

// may assume x, y := m,n here for some m ≥ 0 and n > 0
{x ≥ 0 ∧ y > 0 ∧ (x ≡ m (mod y))}
while x ≥ y do

x := x − y
od
{x ≥ 0 ∧ y > 0 ∧ (x ≡ m (mod y)) ∧ x < y}

Note: repeated subtraction is a way to implement the
integer division. So, the program is taking the residue of x
divided by y.

Software Development Methods, Fall 2009: Hoare Logic – 18/33



IM NTU

A Simple Programming Language

To study inference rules of Hoare logic, we consider a
simple programming language with the following syntax
for statements:

S ::= skip

| x := E

| S1;S2

| if B then S fi

| if B then S1 else S2 fi

| while B do S od

Software Development Methods, Fall 2009: Hoare Logic – 19/33



IM NTU

Proof Rules

{Q[E/x]} x := E {Q} (Assignment)

{P} skip {P} (Skip)

{P} S1 {Q} {Q} S2 {R}

{P} S1;S2 {R}
(Sequence)

{P ∧ B} S1 {Q} {P ∧ ¬B} S2 {Q}

{P} if B then S1 else S2 fi {Q}
(Conditional)

“if B then S fi” can be treated as “if B then S else skip fi” or
directly with the following rule:

{P ∧ B} S {Q} P ∧ ¬B → Q

{P} if B then S fi {Q}
(If-Then)

Software Development Methods, Fall 2009: Hoare Logic – 20/33



IM NTU

Proof Rules (cont.)

{P ∧ B} S {P}

{P} while B do S od {P ∧ ¬B}
(While)

P → P ′ {P ′} S {Q′} Q′ → Q

{P} S {Q}
(Consequence)

Note: with a suitable notion of validity, the set of proof rules
up to now can be shown to be sound and (relatively)
complete for programs that use only the considered
constructs.

Software Development Methods, Fall 2009: Hoare Logic – 21/33



IM NTU

Some Auxiliary Rules

P → P ′ {P ′} S {Q}

{P} S {Q}
(Strengthening Precondition)

{P} S {Q′} Q′ → Q

{P} S {Q}
(Weakening Postcondition)

{P1} S {Q1} {P2} S {Q2}

{P1 ∧ P2} S {Q1 ∧ Q2}
(Conjunction)

{P1} S {Q1} {P2} S {Q2}

{P1 ∨ P2} S {Q1 ∨ Q2}
(Disjunction)

Note: these rules provide more convenience, but do not
actually add deductive power.

Software Development Methods, Fall 2009: Hoare Logic – 22/33



IM NTU

Invariants

An invariant at some point of a program is an assertion
that holds whenever execution of the program reaches
that point.

Assertion P in the rule for a while loop is called a loop
invariant of the while loop.

An assertion is called an invariant of an operation (a
segment of code) if, assumed true before execution of
the operation, the assertion remains true after execution
of the operation.

Invariants are a bridge between the static text of a
program and its dynamic computation.

Software Development Methods, Fall 2009: Hoare Logic – 23/33



IM NTU

Program Annotation

Inserting assertions/invariants in a program as
comments helps understanding of the program.

{x ≥ 0 ∧ y > 0 ∧ (x ≡ m (mod y))}
while x ≥ y do

{x ≥ 0 ∧ y > 0 ∧ x ≥ y ∧ (x ≡ m (mod y))}
x := x − y
{y > 0 ∧ x ≥ 0 ∧ (x ≡ m (mod y))}

od
{x ≥ 0 ∧ y > 0 ∧ (x ≡ m (mod y)) ∧ x < y}

A correct annotation of a program can be seen as a
partial proof outline for the program.

Boolean assertions can also be used as an aid to
program testing.

Software Development Methods, Fall 2009: Hoare Logic – 24/33



IM NTU

An Annotated Program

{x ≥ 0 ∧ y ≥ 0 ∧ gcd(x, y) = gcd(m,n)}

while x 6= 0 and y 6= 0 do
{x ≥ 0 ∧ y ≥ 0 ∧ gcd(x, y) = gcd(m,n)}

if x < y then x, y := y, x fi;
{x ≥ y ∧ y ≥ 0 ∧ gcd(x, y) = gcd(m,n)}

x := x − y

{x ≥ 0 ∧ y ≥ 0 ∧ gcd(x, y) = gcd(m,n)}

od
{(x = 0 ∧ y ≥ 0 ∧ y = gcd(x, y) = gcd(m,n))∨

(x ≥ 0 ∧ y = 0 ∧ x = gcd(x, y) = gcd(m,n))}

Note: m and n are two arbitrary non-negative integers, at least
one of which is nonzero.

Software Development Methods, Fall 2009: Hoare Logic – 25/33



IM NTU

Total Correctness: Termination

All inference rules introduced so far, except the while
rule, work for total correctness.

Below is a rule for the total correctness of the while
statement:

{P ∧ B} S {P} {P ∧ B ∧ t = Z} S {t < Z} P → (t ≥ 0)

{P} while B do S od {P ∧ ¬B}

where t is an integer-valued expression (state function)
and Z is a “rigid” variable that does not occur in P , B, t,
or S.

The above function t is called a rank (or variant)
function.

Software Development Methods, Fall 2009: Hoare Logic – 26/33



IM NTU

Termination of a Simple Program

g, p := 0, n; // n ≥ 1
while p ≥ 2 do

g, p := g + 1, p − 1
od

Loop Invariant: (g + p = n) ∧ (p ≥ 1)

Rank (Variant) Function: p

The loop terminates when p = 1 (p ≥ 1 ∧ p 6≥ 2).

Software Development Methods, Fall 2009: Hoare Logic – 27/33



IM NTU

Well-Founded Sets

A binary relation � ⊆ A × A is a partial order if it is
reflexive: ∀x ∈ A(x � x),
transitive: ∀x, y, z ∈ A((x � y ∧ y � z) → x � z), and
antisymmetric: ∀x, y ∈ A((x � y ∧ y � x) → x = y).

A partially ordered set (W,�) is well-founded if there is
no infinite decreasing chain x1 ≻ x2 ≻ x3 ≻ · · · of
elements from W . (Note: “x ≻ y” means “y � x ∧ y 6= x”.)

Examples:
(Z≥0,≤)

(Z≥0 × Z≥0,≤),
where (x1, y1) ≤ (x2, y2) if (x1 < x2) ∨ (x1 = x2 ∧ y1 ≤ y2)

Software Development Methods, Fall 2009: Hoare Logic – 28/33



IM NTU

Termination by Well-Founded Induction

Below is a more general rule for the total correctness of the
while statement:

{P ∧ B} S {P} {P ∧ B ∧ δ = D} S {δ ≺ D} P → (δ ∈ W )

{P} while B do S od {P ∧ ¬B}

where (W,�) is a well-founded set, δ is a state function, and
D is a “rigid” variable ranged over W that does not occur in
P , B, δ, or S.

Software Development Methods, Fall 2009: Hoare Logic – 29/33



IM NTU

Nondeterminism

Syntax of the Alternative Statement:
if B1 → S1

[] B2 → S2

· · ·
[] Bn → Sn

fi

Each of the “Bi → Si”s is called a guarded command,
where Bi is the guard of the command and Si the body.

Semantic:
1. One of the guarded commands, whose guard

evaluates to true, is nondeterministically selected
and its body executed.

2. If none of the guards evaluates to true, then the
execution aborts.

Software Development Methods, Fall 2009: Hoare Logic – 30/33



IM NTU

Rule for the Alternative Statement

The Alternative Statement:

if B1 → S1

[] B2 → S2

· · ·
[] Bn → Sn

fi

Inference rule:

P → B1 ∨ · · · ∨ Bn {P ∧ Bi} Si {Q}, for 1 ≤ i ≤ n

{P} if B1 → S1[] · · · [] Bn → Sn fi {Q}

Software Development Methods, Fall 2009: Hoare Logic – 31/33



IM NTU

The Coffee Can Problem as a Program

B,W := m,n; // m > 0 ∧ n > 0
while B + W ≥ 2 do

if B ≥ 0 ∧ W > 1 → B,W := B + 1,W − 2 // same color
[] B > 1 ∧ W ≥ 0 → B,W := B − 1,W // same color
[] B > 0 ∧ W > 0 → B,W := B − 1,W // different colors

fi
od

Loop Invariant: W ≡ n (mod 2) (and B + W ≥ 1)

Variant (Rank) Function: B + W

The loop terminates when B + W = 1.

Software Development Methods, Fall 2009: Hoare Logic – 32/33



IM NTU

References

K.R. Apt and E.-R. Olderog. Verification of Sequential
and Concurrent Programs, Springer-Verlag, 1991.

D. Gries. The Science of Programming,
Springer-Verlag, 1981.

C.A.R. Hoare. An axiomatic basis for computer
program. CACM, 12(10):576–583, 1969.

T. Kleymann. Hoare logic and auxiliary variables.
Formal Aspects of Computing, 11:541–566, 1999.

R. Sethi. Programming Languages: Concepts and
Constructs, 2nd Ed., Addison-Wesley, 1996.

Software Development Methods, Fall 2009: Hoare Logic – 33/33


	An Axiomatic View of Programs
	Assertions
	Pre and Post-conditions
	Interpretations of a Hoare Triple
	Pre and Post-Conditions for Specification
	A Little Bit of History
	The Assignment Statement
	Some Hoare Triples for Assignments
	Axiom of the Assignment Statement
	The Multiple Assignment Statement
	Some Hoare Triples for Multi-assignments
	Simultaneous Substitution
	Axiom of the Multiple Assignment
	Assignment to an Array Entry
	Pre and Post-condition of a Loop
	A Simple Example
	More about the Example
	A Simple Programming Language
	Proof Rules
	Proof Rules (cont.)
	Some Auxiliary Rules
	Invariants
	Program Annotation
	An Annotated Program
	Total Correctness: Termination
	Termination of a Simple Program
	Well-Founded Sets
	Termination by Well-Founded Induction
	Nondeterminism
	Rule for the Alternative Statement
	The Coffee Can Problem as a Program
	References

