
Linear Temporal Logic

Yih-Kuen Tsay

Dept. of Information Management
National Taiwan University

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 1 / 42

Outline

Introduction

Propositional Temporal Logic (PTL)

Quantified Propositional Temporal Logic (QPTL)

Basic Properties
From Temporal Formulae to Automata

On-the-fly Translation
Tableau Construction

Concluding Remarks

References

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 2 / 42

Introduction

We have seen how automata, in particular Büchi automata,
may be used to describe the behaviors of a concurrent system.

Büchi automata “localize” temporal dependency between
occurrences of events (represented by propositions) to relations
between states and tend to be of lower level.

We will study an alternative formalism, namely linear temporal
logic.

Temporal logic formulae describe temporal dependency without
explicit references to time points and are in general more
abstract.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 3 / 42

Introduction (cont.)

~q

q

~p

p ~q

q

s0 s1

The above Büchi automaton says that, whenever p holds at
some point in time, q must hold at the same time or will hold
at a later time.
Note: the alphabet is {pq, p∼q, ∼pq, ∼p∼q}; q any input
symbol from {pq, ∼pq}.
It may not be easy to see that this indeed is the case.

In linear temporal logic, this can easily be expressed as
2(p → 3q), which reads “always p implies eventually q”.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 4 / 42

PTL: The Future Only

We first look at the future fragment of Propositional Temporal
Logic (PTL).

Future operators include © (next), 3 (eventually), 2 (always),
U (until), and W (wait-for).

With W replaced by R (release), this fragment is often
referred to as LTL (linear temporal logic) in the model
checking community.

Let V be a set of boolean variables.
The future PTL formulae are defined inductively as follows:

Every variable p ∈ V is a PTL formula.
If f and g are PTL formulae, then so are ¬f , f ∨ g , f ∧ g , ©f , 3f ,

2f , f U g , and f W g .
(¬f ∨ g is also written as f → g and (f → g) ∧ (g → f) as f ↔ g .)

Examples: 2(¬C0 ∨ ¬C1), 2(T1 → 3C1).

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 5 / 42

PTL: The Future Only (cont.)

A PTL formula is interpreted over an infinite sequence of
states σ = s0s1s2 · · · , relative to a position in that sequence.

A state is a subset of V , containing exactly those variables
that evaluate to true in that state.

If each possible subset of V is treated as a symbol, then a
sequence of states can also be viewed as an infinite word over
2V .

The semantics of PTL in terms of (σ, i) |= f (f holds at the
i -th position of σ) is given below.

We say that a sequence σ satisfies a PTL formula f or σ is a
model of f , denoted σ |= f , if (σ, 0) |= f .

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 6 / 42

PTL: The Future Only (cont.)

For a boolean variable p,
(σ, i) |= p ⇐⇒ p ∈ si

For boolean operators,
(σ, i) |= ¬f ⇐⇒ (σ, i) |= f does not hold
(σ, i) |= f ∨ g ⇐⇒ (σ, i) |= f or (σ, i) |= g
(σ, i) |= f ∧ g ⇐⇒ (σ, i) |= f and (σ, i) |= g

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 7 / 42

PTL: The Future Only (cont.)

For future temporal operators,
(σ, i) |= ©f ⇐⇒ (σ, i + 1) |= f

0
-

©f

i

f

i + 1

(σ, i) |= 3f ⇐⇒ for some j ≥ i , (σ, j) |= f

0
-3f

i

f

j

(σ, i) |= 2f ⇐⇒ for all j ≥ i , (σ, j) |= f

0
-

2f

f

i

f f

i + 1

f · · ·

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 8 / 42

PTL: The Future Only (cont.)

For future temporal operators (cont.),
(σ, i) |= f U g ⇐⇒ for some k ≥ i , (σ, k) |= g and for all j ,
i ≤ j < k , (σ, j) |= f

0
-

f U g

f

i

· · · f

k − 1

g

k

(σ, i) |= f W g ⇐⇒ (for some k ≥ i , (σ, k) |= g and for all j ,
i ≤ j < k , (σ, j) |= f) or (for all j ≥ i , (σ, j) |= f)

f W g holds at position i if and only if f U g or 2f holds at position
i .
When R is preferred over W ,
(σ, i) |= f R g ⇐⇒ for all j ≥ i , if (σ, k) 6|= f for all k, i ≤ k < j ,
then (σ, j) |= g .

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 9 / 42

PTL: Adding the Past

We now add the past fragment.

Past operators include ∼© (before), −© (previous), −3 (once), −2
(so-far), S (since), and B (back-to).

The full PTL formulae are defined inductively as follows:
Every variable p ∈ V is a PTL formula.
If f and g are PTL formulae, then so are ¬f , f ∨ g , f ∧ g , ©f , 3f ,

2f , f U g , f W g , ∼©f , −©f , −3f , −2f , f S g , and f B g .
(¬f ∨ g is also written as f → g and (f → g) ∧ (g → f) as f ↔ g .)

Examples:
2(p → −3q) says “every p is preceded by a q.”

2(−3¬p → −3q) is another way of saying p W q!

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 10 / 42

PTL: Adding the Past (cont.)
For past temporal operators,

(σ, i) |= ∼©f ⇐⇒ i = 0 or (σ, i − 1) |= f
(σ, i) |= −©f ⇐⇒ i > 0 and (σ, i − 1) |= f

0

∼©f -f

i − 1

∼©f
−©f

i

The difference between ∼©f and −©f occurs at position 0.
(σ, i) |= −3f ⇐⇒ for some j , 0 ≤ j ≤ i , (σ, j) |= f

0
-

f

j

−3f

i

(σ, i) |= −2f ⇐⇒ for all j , 0 ≤ j ≤ i , (σ, j) |= f

0
-f · · · f f f

i − 1

f

−2f

i

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 11 / 42

PTL: Adding the Past (cont.)

For past temporal operators (cont.),
(σ, i) |= f S g ⇐⇒ for some k , 0 ≤ k ≤ i , (σ, k) |= g and for all j ,
k < j ≤ i , (σ, j) |= f

0
-g

k

f

k + 1

· · ·
f S g

f

i

(σ, i) |= f B g ⇐⇒ (for some k , 0 ≤ k ≤ i , (σ, k) |= g and for all
j , k < j ≤ i , (σ, j) |= f) or (for all j , 0 ≤ j ≤ i , (σ, j) |= f)

f B g holds at position i if and only if f S g or −2f holds at position
i .

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 12 / 42

QPTL

Quantified Propositional Temporal Logic (QPTL) is PTL
extended with quantification over boolean variables (so, every
PTL formula is also a QPTL formula):

If f is a QPTL formula and x ∈ V , then ∀x : f and ∃x : f are QPTL
formulae.

Let σ = s0s1 · · · and σ′ = s ′0s ′1 · · · be two sequences of states.

We say that σ′ is a x-variant of σ if, for every i ≥ 0, s ′i differs
from si at most in the valuation of x , i.e., the symmetric set
difference of s ′i and si is either {x} or empty.

The semantics of QPTL is defined by extending that of PTL
with additional semantic definitions for the quantifiers:

(σ, i) |= ∃x : f ⇐⇒ (σ′, i) |= f for some x-variant σ′ of σ
(σ, i) |= ∀x : f ⇐⇒ (σ′, i) |= f for all x-variant σ′ of σ

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 13 / 42

Equivalence and Congruence

A formula p is valid, denoted |= p, if σ |= p for every σ.

Two formulae p and q are equivalent if |= p ↔ q,
i.e., σ |= p if and only if σ |= q for every σ.

Two formulae p and q are congruent, denoted p ∼= q, if
|= 2(p ↔ q).

Congruence is a stronger relation than equivalence:
p ∨ ¬p and ¬ −©(p ∨ ¬p) are equivalent, as they are both true at
position 0 of every model.
However, they are not congruent; p ∨ ¬p holds at all positions of
every model, while ¬ −©(p ∨ ¬p) holds only at position 0.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 14 / 42

Congruences

A minimal set of operators:

¬,∨,©, W , ∼©, B

Other operators could be encoded:

−©p ∼= ¬ ∼©¬p
2p ∼= p W False −2p ∼= p B False
3p ∼= ¬2¬p −3p ∼= ¬ −2¬p
p U q ∼= (p W q ∧3q) p S q ∼= (p B q ∧ −3q)

Weak vs. strong operators:

−©p ∼= (∼©p ∧ −©True) ∼©p ∼= (−©p ∧ ∼©False)
p U q ∼= (p W q ∧3q) p W q ∼= (p U q ∨2p)
p S q ∼= (p B q ∧ −3q) p B q ∼= (p S q ∨ −2p)

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 15 / 42

Congruences (cont.)

Duality:

¬©p ∼= ©¬p ¬ −©p ∼= ∼©¬p
¬ ∼©p ∼= −©¬p

¬3p ∼= 2¬p ¬ −3p ∼= −2¬p
¬2p ∼= 3¬p ¬ −2p ∼= −3¬p
¬(p U q) ∼= (¬q) W (¬p ∧ ¬q) ¬(p S q) ∼= (¬q) B (¬p ∧ ¬q)
¬(p U q) ∼= (¬p) R (¬q)
¬(p W q) ∼= (¬q) U (¬p ∧ ¬q) ¬(p B q) ∼= (¬q) S (¬p ∧ ¬q)
¬(p R q) ∼= (¬p) U (¬q)

¬∃x : p ∼= ∀x : ¬p
¬∀x : p ∼= ∃x : ¬p

A formula is in the negation normal form if negation only
occurs in front of an atomic proposition.

Every PTL/QPTL formula can be converted into an equivalent
formula in the negation normal form.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 16 / 42

Congruences (cont.)

Expansion formulae:

2p ∼= p ∧ ©2p −2p ∼= p ∧ ∼© −2p
3p ∼= p ∨ ©3p −3p ∼= p ∨ −© −3p
p U q ∼= q ∨ (p ∧ ©(p U q)) p S q ∼= q ∨ (p ∧ −©(p S q))
p W q ∼= q ∨ (p ∧ ©(p W q)) p B q ∼= q ∨ (p ∧ ∼©(p B q))
p R q ∼= (q ∧ p) ∨ (q ∧ ©(p R q))

These expansion formulae are essential in translation of a
temporal formula into an equivalent Büchi automaton.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 17 / 42

Congruences (cont.)

Idempotence:

33p ∼= 3p −3 −3p ∼= −3p
22p ∼= 2p −2 −2p ∼= −2p
p U (p U q) ∼= p U q p S (p S q) ∼= p S q
p W (p W q) ∼= p W q p B (p B q) ∼= p B q
(p U q) U q ∼= p U q (p S q) S q ∼= p S q
(p W q) W q ∼= p W q (p B q) B q ∼= p B q

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 18 / 42

Expressiveness

Theorem

PTL is strictly less expressive than Büchi automata.

Proof.
1 Every PTL formula can be translated into an equivalent Büchi

automaton.
2 “p holds at every even position” is recognizable by a Büchi

automaton, but cannot be expressed in PTL.

Theorem

QPTL is expressively equivalent to Büchi automata (and hence
ω-regular expressions and S1S).

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 19 / 42

Simple On-the-fly Translation

This is a tableau-based algorithm for obtaining a Büchi
automaton from an LTL (future PTL) formula.

The algorithm is geared towards being used in model checking
in an on-the-fly fashion:
It is possible to detect that a property does not hold by only
constructing part of the model and of the automaton.

The algorithm can also be used to check the validity of a
temporal logic assertion.

To apply the translation algorithm, we first convert the formula
ϕ into the negation normal form.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 20 / 42

Data Structure of an Automaton Node

ID: A string that identifies the node.

Incoming : The incoming edges represented by the IDs of the
nodes with an outgoing edge leading to the current node.

New : A set of subformulae that must hold at the current state
and have not yet been processed.

Old : The subformulae that must hold in the node and have
already been processed.

Next: The subformulae that must hold in all states that are
immediate successors of states satisfying the properties in Old.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 21 / 42

The Algorithm

The algorithm starts with a single node, which has a single
incoming edge labeled init (i.e., from an initial node) and
expands the nodes in an DFS manner.

This starting node has initially one new obligation in New,
namely ϕ, and Old and Next are initially empty.

With the current node N , the algorithm checks if there are
unprocessed obligations left in New .

If not, the current node is fully processed and ready to be
added to Nodes.

If there already is a node in Nodes with the same obligations in
both its Old and Next fields, the incoming edges of N are
incorporated into those of the existing node.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 22 / 42

The Algorithm (cont.)

If no such node exists in Nodes, then the current node N is
added to this list, and a new current node is formed for its
successor as follows:

1 There is initially one edge from N to the new node.
2 New is set initially to the Next field of N.
3 Old and Next of the new node are initially empty.

When processing the current node, a formula η in New is
removed from this list.
In the case that η is a literal (a proposition or the negation of
a proposition), then

if ¬η is in Old, the current node is discarded;
otherwise, η is added to Old .

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 23 / 42

The Algorithm (cont.)

When η is not a literal, the current node can be split into two
or not split, and new formulae can be added to the fields New
and Next.
The exact actions depend on the form of η:

η = p ∧ q, then both p and q are added to New .
η = p ∨ q, then the node is split, adding p to New of one copy, and
q to the other.
η = p U q (∼= q ∨ (p ∧©(p U q))), then the node is split.
For the first copy, p is added to New and p U q to Next.
For the other copy, q is added to New .
η = p R q (∼= (q ∧ p) ∨ (q ∧©(p R q))), similar to U .
η = ©p, then p is added to Next.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 24 / 42

Nodes to GBA

The list of nodes in Nodes can now be converted into a generalized
Büchi automaton B = (Σ,Q, q0,∆,F):

1 Σ consists of sets of propositions from AP .
2 The set of states Q includes the nodes in Nodes and the

additional initial state q0.
3 (r , α, r ′) ∈ ∆ iff r ∈ Incoming(r ′) and α satisfies the

conjunction of the negated and nonnegated propositions in
Old(r ′)

4 q0 is the initial state, playing the role of init.
5 F contains a separate set Fi of states for each subformula of

the form p U q; Fi contains all the states r such that either
q ∈ Old(r) or p U q 6∈ Old(r).

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 25 / 42

Tableau Construction

We next study the Tableau Construction as described in
[Manna and Pnueli 1995], which handles both future and past
temporal operators.

More efficient constructions exist, but this construction is
relatively easy to understand.

A tableau is a graphical representation of all models/sequences
that satisfy the given temporal logic formula.

The construction results in essentially a GBA, but leaving
propositions on the states (rather than moving them to the
incoming edges of a state).

Our presentation will be slightly different, to make the
resulting GBA more apparent.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 26 / 42

Expansion Formulae

The requirement that a temporal formula holds at a position j
of a model can often be decomposed into requirements that

a simpler formula holds at the same position and
some other formula holds either at j + 1 or j − 1.

For this decomposition, we have the following expansion
formulae:

2p ∼= p ∧ ©2p −2p ∼= p ∧ ∼© −2p
3p ∼= p ∨ ©3p −3p ∼= p ∨ −© −3p
p U q ∼= q ∨ (p ∧ ©(p U q)) p S q ∼= q ∨ (p ∧ −©(p S q))
p W q ∼= q ∨ (p ∧ ©(p W q)) p B q ∼= q ∨ (p ∧ ∼©(p B q))

Note: this construction does not deal with R .

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 27 / 42

Closure

We define the closure of a formula ϕ, denoted by Φϕ, as the
smallest set of formulae satisfying the following requirements:

ϕ ∈ Φϕ.
For every p ∈ Φϕ, if q a subformula of p then q ∈ Φϕ.
For every p ∈ Φϕ, ¬p ∈ Φϕ.
For every ψ ∈ {2p,3p, p U q, p W q}, if ψ ∈ Φϕ then ©ψ ∈ Φϕ.
For every ψ ∈ { −3p, p S q}, if ψ ∈ Φϕ then −©ψ ∈ Φϕ.
For every ψ ∈ { −2p, p B q}, if ψ ∈ Φϕ then ∼©ψ ∈ Φϕ.

So, the closure Φϕ of a formula ϕ includes all formulae that
are relevant to the truth of ϕ.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 28 / 42

Classification of Formulae

α K (α)
p ∧ q p, q
2p p, ©2p
−2p p, ∼© −2p

β K1(β) K2(β)
p ∨ q p q
3p p ©3p
−3p p −© −3p

p U q q p, ©(p U q)
p W q q p, ©(p W q)
p S q q p, −©(p S q)
p B q q p, ∼©(p B q)

An α-formula ϕ holds at position j iff all the K (ϕ)-formulae
hold at j .

A β-formula ψ holds at position j iff either K1(ψ) or all the
K2(ψ)-formulae (or both) hold at j .

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 29 / 42

Atoms

We define an atom over ϕ to be a subset A ⊆ Φϕ satisfying
the following requirements:

Rsat : the conjunction of all state formulae in A is satisfiable.
R¬: for every p ∈ Φϕ, p ∈ A iff ¬p 6∈ A.
Rα : for every α-formula p ∈ Φϕ, p ∈ A iff K (p) ⊆ A.
Rβ : for every β-formula p ∈ Φϕ, p ∈ A iff either K1(p) ∈ A or
K2(p) ⊆ A (or both).

For example, if atom A contains the formula ¬3p, it must also
contain the formulae ¬p and ¬©3p.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 30 / 42

Mutually Satisfiable Formulae

A set of formulae S ⊆ Φϕ is called mutually satisfiable if there
exists a model σ and a position j ≥ 0, such that every formula
p ∈ S holds at position j of σ.

The intended meaning of an atom is that it represents a
maximal mutually satisfiable set of formulae.

Claim (atoms represent necessary conditions)

Let S ⊆ Φϕ be a mutually satisfiable set of formulae. Then there
exists a ϕ-atom A such that S ⊆ A.

It is important to realize that inclusion in an atom is only a
necessary condition for mutual satisfiability (e.g.,
{©p ∨ ©¬p,©p,©¬p, p} is an atom for the formula
©p ∨ ©¬p).

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 31 / 42

Basic Formulae

A formula is called basic if it is either a proposition or has the
form ©p, −©p, or ∼©p.

Basic formulae are important because their presence or absence
in an atom uniquely determines all other closure formulae in
the same atom.

Let Φ+
ϕ denote the set of formulae in Φϕ that are not of the

form ¬ψ.

Algorithm (atom construction)

1 Find all basic formulae p1, · · · , pb ∈ Φ+
ϕ .

2 Construct all 2b combinations.
3 Complete each combination into a full atom.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 32 / 42

Example

Consider the formula ϕ1 : 2p ∧3¬p whose basic formulae are

p, ©2p, ©3¬p.

Following is the list of all atoms of ϕ1:

A0 : {¬p, ¬©2p, ¬©3¬p, ¬2p, 3¬p, ¬ϕ1}
A1 : {p, ¬©2p, ¬©3¬p, ¬2p, ¬3¬p, ¬ϕ1}
A2 : {¬p, ¬©2p, ©3¬p, ¬2p, 3¬p, ¬ϕ1}
A3 : {p, ¬©2p, ©3¬p, ¬2p, 3¬p, ¬ϕ1}
A4 : {¬p, ©2p, ¬©3¬p, ¬2p, 3¬p, ¬ϕ1}
A5 : {p, ©2p, ¬©3¬p, 2p, ¬3¬p, ¬ϕ1}
A6 : {¬p, ©2p, ©3¬p, ¬2p, 3¬p, ¬ϕ1}
A7 : {p, ©2p, ©3¬p, 2p, 3¬p, ϕ1}

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 33 / 42

The Tableau

Given a formula ϕ, we construct a directed graph Tϕ, called
the tableau of ϕ, by the following algorithm.

Algorithm (tableau construction)

1 The nodes of Tϕ are the atoms of ϕ.

2 Atom A is connected to atom B by a directed edge if all of the following
are satisfied:

R© : For every ©p ∈ Φϕ, ©p ∈ A iff p ∈ B.

R−© : For every −©p ∈ Φϕ, p ∈ A iff −©p ∈ B.

R∼© : For every ∼©p ∈ Φϕ, p ∈ A iff ∼©p ∈ B.

An atom is called initial if it does not contain a formula of the
form −©p or ¬ ∼©p (∼= −©¬p).

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 34 / 42

Example

Figure: Tableau Tϕ1 for ϕ1 = 2p ∧3¬p. Source: [Manna and Pnueli 1995].

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 35 / 42

From the Tableau to a GBA

Create an initial node and link it to every initial atom that
contains ϕ.

Label each directed edge with the atomic propositions that are
contained in the ending atom.
Add a set of atoms to the accepting set for each subformula of
the following form:

3q: atoms with q or ¬3q.
p U q: atoms with q or ¬(p U q).
¬2¬q (∼= 3q): atoms with q or 2¬q.
¬(¬q W p) (∼= ¬p U (q ∧ ¬p)): atoms with q or ¬q W p.
¬2q (∼= 3¬q): atoms with ¬q or 2q.
¬(q W p) (∼= ¬p U (¬q ∧ ¬p)): atoms with ¬q or q W p.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 36 / 42

Correctness: Models vs. Paths

For a model σ, the infinite atom path πσ : A0,A1, · · · in Tϕ is
said to be induced by σ if, for every position j ≥ 0 and every
closure formula p ∈ Φϕ,

(σ, j) |= p iff p ∈ Aj .

Claim (models induce paths)

Consider a formula ϕ and its tableau Tϕ. For every model
σ : s0, s1, · · · , there exists an infinite atom path πσ : A0,A1, · · · in
Tϕ induced by σ.

Furthermore, A0 is an initial atom, and if σ |= ϕ then ϕ ∈ A0.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 37 / 42

Correctness: Promising Formulae

A formula ψ ∈ Φϕ is said to promise the formula r if ψ has one
of the following forms:

3r , p U r , ¬2¬r , ¬(¬r W p).

or if r is the negation ¬q and ψ has one of the forms:

¬2q, ¬(q W p).

Claim (promise fulfillment by models)

Let σ be a model and ψ, a formula promising r . Then, σ contains
infinitely many positions j ≥ 0 such that

(σ, j) |= ¬ψ or (σ, j) |= r .

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 38 / 42

Correctness: Fulfilling Paths

Atom A fulfills a formula ψ that promises r if ¬ψ ∈ A or r ∈ A.

A path π : A0,A1, · · · in the tableau Tϕ is called fulfilling:

A0 is an initial atom.
For every promising formula ψ ∈ Φϕ, π contains infinitely many
atoms Aj that fulfill ψ.

Claim (models induce fulfilling paths)

If πσ : A0,A1, · · · is a path induced by a model σ, then πσ is
fulfilling.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 39 / 42

Correctness: Fulfilling Paths (cont.)

Claim (fulfilling paths induce models)

If π : A0,A1, · · · is a fulfilling path in Tϕ, there exists a model σ
inducing π, i.e., π = πσ and, for every ψ ∈ Φϕ and every j ≥ 0,

(σ, j) |= ψ iff ψ ∈ Aj .

Proposition (satisfiability and fulfilling paths)

Formula ϕ is satisfiable iff the tableau Tϕ contains a fulfilling path
π = A0,A1, · · · such that A0 is an initial ϕ-atom.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 40 / 42

Concluding Remarks

PTL can be extended in other ways to be as expressive as
Büchi automata, i.e., to express all ω-regular properties.

For example, the industry standard IEEE 1850 Property
Specification Language (PSL) is based on an extension that
adds classic regular expressions.

Regarding translation of a temporal formula into an equivalent
Büchi automaton, there have been quite a few algorithms
proposed in the past.

How to obtain an automaton as small as possible remains
interesting, for both theoretical and practical reasons.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 41 / 42

References

E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking,
The MIT Press, 1999.

E.A. Emerson. Temporal and modal logic, Handbook of
Theoretical Computer Science (Vol. B), MIT Press, 1990.

G.J. Holzmann. The SPIN Model Checker: Primer and
Reference Manual, Addison-Wesley, 2003.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and
Concurrent Systems: Specification, Springer, 1992.

Z. Manna and A. Pnueli. Temporal Verification of Reactive
Systems: Safety, Springer, 1995.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic 42 / 42

