

Linear Temporal Logic

Yih-Kuen Tsay

Dept. of Information Management National Taiwan University

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic

1 / 42

э

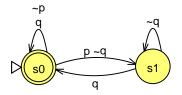
Outline

- 😚 Introduction
- 😚 Propositional Temporal Logic (PTL)
- 📀 Quantified Propositional Temporal Logic (QPTL)
- 😚 Basic Properties
- 😚 From Temporal Formulae to Automata
 - 👏 On-the-fly Translation
 - 🌻 Tableau Construction
- 😚 Concluding Remarks
- 😚 References

Introduction

- We have seen how automata, in particular Büchi automata, may be used to describe the behaviors of a concurrent system.
- Büchi automata "localize" temporal dependency between occurrences of events (represented by propositions) to relations between states and tend to be of lower level.
- We will study an alternative formalism, namely linear temporal logic.
- Temporal logic formulae describe temporal dependency without explicit references to time points and are in general more abstract.

Introduction (cont.)



The above Büchi automaton says that, whenever p holds at some point in time, q must hold at the same time or will hold at a later time. Note: the alphabet is {pq, p~q, ~pq, ~p~q}; q any input

symbol from {pq, \sim pq}.

- It may not be easy to see that this indeed is the case.
- In linear temporal logic, this can easily be expressed as □(p→ ◊q), which reads "always p implies eventually q".

Yih-Kuen Tsay (IM @ NTU)

PTL: The Future Only

- We first look at the future fragment of Propositional Temporal Logic (PTL).
- Future operators include (next), ◇ (eventually), □ (always), U (until), and W (wait-for).
- With \mathcal{W} replaced by \mathcal{R} (release), this fragment is often referred to as LTL (linear temporal logic) in the model checking community.
- 📀 Let V be a set of boolean variables.
- The future PTL formulae are defined inductively as follows:
 - Svery variable $p \in V$ is a PTL formula.
 - If f and g are PTL formulae, then so are ¬f, f ∨ g, f ∧ g, ○f, ◊f, □f, f Ug, and f Wg.

 $(\neg f \lor g \text{ is also written as } f \to g \text{ and } (f \to g) \land (g \to f) \text{ as } f \leftrightarrow g.)$

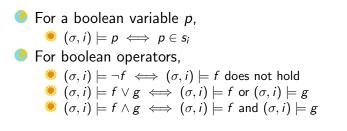
• Examples: $\Box(\neg C_0 \lor \neg C_1), \Box(T_1 \to \diamondsuit C_1).$

Yih-Kuen Tsay (IM @ NTU)

- A PTL formula is interpreted over an infinite sequence of states $\sigma = s_0 s_1 s_2 \cdots$, relative to a position in that sequence.
- A state is a subset of V, containing exactly those variables that evaluate to true in that state.
- If each possible subset of V is treated as a symbol, then a sequence of states can also be viewed as an infinite word over 2^V.
- The semantics of PTL in terms of $(\sigma, i) \models f$ (*f* holds at the *i*-th position of σ) is given below.
- We say that a sequence σ satisfies a PTL formula f or σ is a model of f, denoted $\sigma \models f$, if $(\sigma, 0) \models f$.

Yih-Kuen Tsay (IM @ NTU)

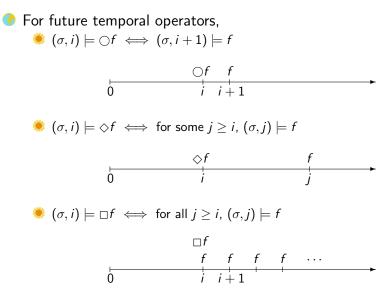
Software Development Methods, Fall 2009: Linear Temporal Logic



Yih-Kuen Tsay (IM @ NTU)

Software Development Methods, Fall 2009: Linear Temporal Logic

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

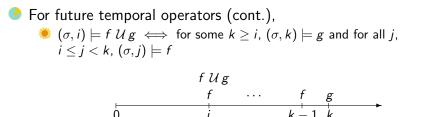


Yih-Kuen Tsay (IM @ NTU)

Software Development Methods, Fall 2009: Linear Temporal Logic

8 / 42

Ó



 $(\sigma, i) \models f \mathcal{W}g \iff$ (for some $k \ge i$, $(\sigma, k) \models g$ and for all j, i < j < k, $(\sigma, j) \models f$) or (for all j > i, $(\sigma, j) \models f$)

 $f \mathcal{W}g$ holds at position *i* if and only if $f \mathcal{U}g$ or $\Box f$ holds at position

When \mathcal{R} is preferred over \mathcal{W} . $(\sigma, i) \models f \mathcal{R}g \iff$ for all $j \ge i$, if $(\sigma, k) \not\models f$ for all $k, i \le k < j$, then $(\sigma, i) \models g$.

Yih-Kuen Tsay (IM @ NTU)

9 / 42

PTL: Adding the Past

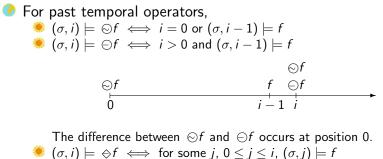
- 😚 We now add the past fragment.
- Past operators include \bigcirc (before), \bigcirc (previous), \Leftrightarrow (once), ⊟ (so-far), S (since), and B (back-to).
- The full PTL formulae are defined inductively as follows:
 - Svery variable $p \in V$ is a PTL formula.
 - If f and g are PTL formulae, then so are ¬f, f ∨ g, f ∧ g, ⊖f, ◊f, □f, f Ug, f Wg, ⊙f, ⊖f, ◊f, □f, f Sg, and f Bg.
 - $(\neg f \lor g \text{ is also written as } f \to g \text{ and } (f \to g) \land (g \to f) \text{ as } f \leftrightarrow g.)$

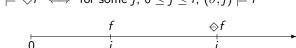
📀 Examples:

□(p→ ⇔q) says "every p is preceded by a q."
 □(⇔¬p→ ⇔q) is another way of saying p W q!

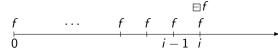
Yih-Kuen Tsay (IM @ NTU)

PTL: Adding the Past (cont.)





 $\overset{\circledast}{=} (\sigma,i) \models \ \ \, \boxplus f \iff \text{ for all } j, \ 0 \le j \le i, \ (\sigma,j) \models f$



Yih-Kuen Tsay (IM @ NTU)

Software Development Methods, Fall 2009: Linear Temporal Logic

PTL: Adding the Past (cont.)

For past temporal operators (cont.),
(σ, i) $\models f \ S g \iff$ for some $k, 0 \le k \le i, (\sigma, k) \models g$ and for all $j, k < j \le i, (\sigma, j) \models f$ $f \ S g$ $f \ S$

 $i (\sigma, i) \models f \mathcal{S}g \iff (\text{for some } k, \sigma \subseteq k \subseteq i, (\sigma, i) \models g \text{ and for all } i, k < j \le i, (\sigma, j) \models f)$ or (for all $j, 0 \le j \le i, (\sigma, j) \models f)$ $f \mathcal{B}g$ holds at position i if and only if $f \mathcal{S}g$ or $\Box f$ holds at position i.

Yih-Kuen Tsay (IM @ NTU)

Software Development Methods, Fall 2009: Linear Temporal Logic

12 / 42

QPTL

- Quantified Propositional Temporal Logic (QPTL) is PTL extended with quantification over boolean variables (so, every PTL formula is also a QPTL formula):
 - If f is a QPTL formula and $x \in V$, then $\forall x \colon f$ and $\exists x \colon f$ are QPTL formulae.
- Let $\sigma = s_0 s_1 \cdots$ and $\sigma' = s'_0 s'_1 \cdots$ be two sequences of states.
- We say that σ' is a x-variant of σ if, for every $i \ge 0$, s'_i differs from s_i at most in the valuation of x, i.e., the symmetric set difference of s'_i and s_i is either $\{x\}$ or empty.
- The semantics of QPTL is defined by extending that of PTL with additional semantic definitions for the quantifiers:

Yih-Kuen Tsay (IM @ NTU)

Equivalence and Congruence

- A formula *p* is valid, denoted $\models p$, if $\sigma \models p$ for every σ .
- Two formulae p and q are equivalent if $\models p \leftrightarrow q$, i.e., $\sigma \models p$ if and only if $\sigma \models q$ for every σ .
- Two formulae p and q are congruent, denoted $p \cong q$, if $\models \Box(p \leftrightarrow q)$.
- Congruence is a stronger relation than equivalence:
 - *p* ∨ ¬*p* and ¬⊖(*p* ∨ ¬*p*) are equivalent, as they are both true at position 0 of every model.
 - However, they are not congruent; p ∨ ¬p holds at all positions of every model, while ¬⊖(p ∨ ¬p) holds only at position 0.

Yih-Kuen Tsay (IM @ NTU)

Congruences

A minimal set of operators:

 $\neg, \lor, \bigcirc, \ \mathcal{W}, \odot, \ \mathcal{B}$

Other operators could be encoded:

$$\begin{array}{c} \bigcirc p \cong \neg \odot \neg p \\ \square p \cong p \ \mathcal{W} \ False \\ \Diamond p \cong \neg \square \neg p \\ p \ \mathcal{U} \ q \cong (p \ \mathcal{W} \ q \land \Diamond q) \end{array} \begin{array}{c} \bigcirc p \cong \neg \odot \neg p \\ \Diamond p \cong p \ \mathcal{B} \ False \\ \Diamond p \cong \neg \square \neg p \\ p \ \mathcal{U} \ q \cong (p \ \mathcal{W} \ q \land \Diamond q) \end{array}$$

Weak vs. strong operators:

$$\begin{array}{ll} \bigcirc p \cong (\oslash p \land \ominus \mathsf{True}) & \oslash p \cong (\bigcirc p \land \odot \mathsf{False}) \\ p \ \mathcal{U} \ q \cong (p \ \mathcal{W} \ q \land \Diamond q) & p \ \mathcal{W} \ q \cong (p \ \mathcal{U} \ q \lor \Box p) \\ p \ \mathcal{S} \ q \cong (p \ \mathcal{B} \ q \land \Diamond q) & p \ \mathcal{B} \ q \cong (p \ \mathcal{S} \ q \lor \Box p) \end{array}$$

Yih-Kuen Tsay (IM @ NTU)

IM

Congruences (cont.)

😚 Duality:

$$\neg \bigcirc p \cong \bigcirc \neg p \qquad \neg \bigcirc p \cong \oslash \neg p \\ \neg \oslash p \cong \bigcirc \neg p \qquad \neg \oslash p \cong \oslash \neg p \\ \neg \oslash p \cong \bigcirc \neg p \qquad \neg \oslash p \cong \oslash \neg p \\ \neg \bigcirc p \cong \oslash \neg p \qquad \neg \oslash p \cong \oslash \neg p \\ \neg \bigcirc p \boxtimes \Diamond \neg p \qquad \neg \boxdot p \cong \oslash \neg p \\ \neg (p \ U \ q) \cong (\neg q) \ W (\neg p \land \neg q) \qquad \neg (p \ S \ q) \cong (\neg q) \ B (\neg p \land \neg q) \\ \neg (p \ W \ q) \cong (\neg q) \ U (\neg p \land \neg q) \qquad \neg (p \ B \ q) \cong (\neg q) \ S (\neg p \land \neg q) \\ \neg (p \ R \ q) \cong (\neg p) \ U (\neg q) \qquad \qquad \neg \exists x \colon p \cong \exists x \colon \neg p \\ \neg \forall x \colon p \cong \exists x \colon \neg p$$

- A formula is in the *negation normal form* if negation only occurs in front of an atomic proposition.
- Every PTL/QPTL formula can be converted into an equivalent formula in the negation normal form.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic

Congruences (cont.)

Expansion formulae:

 $\begin{array}{ll} \Box p \cong p \land \bigcirc \Box p \\ \Diamond p \cong p \lor \bigcirc \Diamond p \\ p \ \mathcal{U} q \cong q \lor (p \land \bigcirc (p \ \mathcal{U} q)) \\ p \ \mathcal{W} q \cong q \lor (p \land \bigcirc (p \ \mathcal{W} q)) \\ p \ \mathcal{R} q \cong (q \land p) \lor (q \land \bigcirc (p \ \mathcal{R} q)) \end{array} \qquad \begin{array}{ll} \Box p \cong p \land \oslash \Box p \\ \Diamond p \cong p \lor \odot \Diamond p \\ p \ \mathcal{S} q \cong p \lor \odot \Diamond p \\ p \ \mathcal{S} q \cong q \lor (p \land \bigcirc (p \ \mathcal{S} q)) \\ p \ \mathcal{B} q \cong q \lor (p \land \odot (p \ \mathcal{R} q)) \end{array}$

These expansion formulae are essential in translation of a temporal formula into an equivalent Büchi automaton.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic

く 戸 ト く ヨ ト く ヨ ト 一

Congruences (cont.)

📀 Idempotence:

$$\begin{array}{ll} \diamond \diamond p \cong \diamond p & \Leftrightarrow \diamond \diamond p \cong \diamond p \\ \Box \Box p \cong \Box p & \Box p \cong \Box p \\ p \mathcal{U} (p \mathcal{U} q) \cong p \mathcal{U} q & p \mathcal{S} (p \mathcal{S} q) \cong p \mathcal{S} q \\ p \mathcal{W} (p \mathcal{W} q) \cong p \mathcal{W} q & p \mathcal{B} (p \mathcal{B} q) \cong p \mathcal{B} q \\ (p \mathcal{U} q) \mathcal{U} q \cong p \mathcal{U} q & (p \mathcal{S} q) \mathcal{S} q \cong p \mathcal{S} q \\ (p \mathcal{W} q) \mathcal{W} q \cong p \mathcal{W} q & (p \mathcal{B} q) \mathcal{B} q \cong p \mathcal{B} q \end{array}$$

Yih-Kuen Tsay (IM @ NTU)

Software Development Methods, Fall 2009: Linear Temporal Logic

э

Expressiveness

Theorem

PTL is strictly less expressive than Büchi automata.

Proof.

- Every PTL formula can be translated into an equivalent Büchi automaton.
- "p holds at every even position" is recognizable by a Büchi automaton, but cannot be expressed in PTL.

Theorem

QPTL is expressively equivalent to Büchi automata (and hence ω -regular expressions and S1S).

・ロト ・ 一下 ・ ・ ヨト ・ 日 ト

Simple On-the-fly Translation

- This is a tableau-based algorithm for obtaining a Büchi automaton from an LTL (future PTL) formula.
- The algorithm is geared towards being used in model checking in an on-the-fly fashion:

It is possible to detect that a property does not hold by only constructing part of the model and of the automaton.

- The algorithm can also be used to check the validity of a temporal logic assertion.
- To apply the translation algorithm, we first convert the formula φ into the *negation normal form*.

・ロト ・ 同ト ・ ヨト ・ ヨト …

Data Structure of an Automaton Node

- ID: A string that identifies the node.
- Incoming: The incoming edges represented by the IDs of the nodes with an outgoing edge leading to the current node.
- *New*: A set of subformulae that must hold at the current state and have not yet been processed.
- Old: The subformulae that must hold in the node and have already been processed.
- Next: The subformulae that must hold in all states that are immediate successors of states satisfying the properties in Old.

- 4 週 ト 4 三 ト 4 三 ト

The Algorithm

- The algorithm starts with a single node, which has a single incoming edge labeled *init* (i.e., from an initial node) and expands the nodes in an DFS manner.
- This starting node has initially one new obligation in New, namely φ , and Old and Next are initially empty.
- With the current node N, the algorithm checks if there are unprocessed obligations left in New.
- If not, the current node is fully processed and ready to be added to Nodes.
- If there already is a node in *Nodes* with the same obligations in both its *Old* and *Next* fields, the incoming edges of *N* are incorporated into those of the existing node.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二圓 - のへで

The Algorithm (cont.)

If no such node exists in Nodes, then the current node N is added to this list, and a new current node is formed for its successor as follows:

- There is initially one edge from N to the new node.
- 2 New is set initially to the Next field of N.
- Old and Next of the new node are initially empty.
- When processing the current node, a formula η in New is removed from this list.
- In the case that η is a literal (a proposition or the negation of a proposition), then
 - 🔅 if $\neg\eta$ is in *Old*, the current node is discarded;
 - 🟓 otherwise, η is added to Old.

Yih-Kuen Tsay (IM @ NTU)

The Algorithm (cont.)

- When η is not a literal, the current node can be split into two or not split, and new formulae can be added to the fields New and Next.
- $\ref{eq: the exact actions depend on the form of <math>\eta$:
 - $\eta = p \land q$, then both p and q are added to New.
 - $\eta = p \lor q$, then the node is split, adding p to New of one copy, and q to the other.
 - *η* = p U q (≅ q ∨ (p ∧ ○(p U q))), then the node is split.
 For the first copy, p is added to New and p U q to Next.
 For the other copy, q is added to New.
 - ${\ \ } = p \; {\mathcal R} \, q \; (\cong (q \wedge p) \lor (q \wedge \bigcirc (p \; {\mathcal R} \; q))),$ similar to ${\mathcal U}$.
 - $\eta = \bigcirc p$, then p is added to Next.

Yih-Kuen Tsay (IM @ NTU)

Nodes to GBA

The list of nodes in *Nodes* can now be converted into a generalized Büchi automaton $B = (\Sigma, Q, q_0, \Delta, F)$:

- Σ consists of sets of propositions from *AP*.
- **2** The set of states Q includes the nodes in *Nodes* and the additional initial state q_0 .
- (r, α, r') ∈ Δ iff r ∈ Incoming(r') and α satisfies the conjunction of the negated and nonnegated propositions in Old(r')
- q_0 is the initial state, playing the role of *init*.
- F contains a separate set F_i of states for each subformula of the form p U q; F_i contains all the states r such that either q ∈ Old(r) or p U q ∉ Old(r).

Yih-Kuen Tsay (IM @ NTU)

Tableau Construction

- We next study the Tableau Construction as described in [Manna and Pnueli 1995], which handles both future and past temporal operators.
- More efficient constructions exist, but this construction is relatively easy to understand.
- A tableau is a graphical representation of all models/sequences that satisfy the given temporal logic formula.
- The construction results in essentially a GBA, but leaving propositions on the states (rather than moving them to the incoming edges of a state).
- Our presentation will be slightly different, to make the resulting GBA more apparent.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic

Expansion Formulae

The requirement that a temporal formula holds at a position j of a model can often be decomposed into requirements that

🔋 a simpler formula holds at the same position and

some other formula holds either at j + 1 or j - 1.

For this decomposition, we have the following expansion formulae:

$$\begin{array}{ll} \square p \cong p \land \bigcirc \square p & \square p \cong p \land \oslash \square p \\ \Diamond p \cong p \lor \bigcirc \Diamond p & \Diamond p \cong p \lor \oslash \Diamond p \\ p \ \mathcal{U} q \cong q \lor (p \land \bigcirc (p \ \mathcal{U} q)) & p \ \mathcal{S} q \cong q \lor (p \land \bigcirc (p \ \mathcal{S} q)) \\ p \ \mathcal{W} q \cong q \lor (p \land \bigcirc (p \ \mathcal{W} q)) & p \ \mathcal{B} q \cong q \lor (p \land \oslash (p \ \mathcal{B} q)) \end{array}$$

Note: this construction does not deal with \mathcal{R} .

Yih-Kuen Tsay (IM @ NTU)

Software Development Methods, Fall 2009: Linear Temporal Logic

- 4 週 ト - 4 三 ト - 4 三 ト - -

Closure

- We define the closure of a formula φ , denoted by Φ_{φ} , as the smallest set of formulae satisfying the following requirements:

 - $widetilde{=}$ For every $p\in \Phi_arphi$, if q a subformula of p then $q\in \Phi_arphi.$

 - $\ \ \, \hbox{$\stackrel{\textcircled{}}{=}$} \ \ \, \hbox{For every} \ \ \, \psi \in \{\Box p, \Diamond p, p \ \ \, \mathcal{U} \ \, q, p \ \ \, \mathcal{W} \ \, q\}, \ \ \, \hbox{if} \ \ \psi \in \Phi_{\varphi} \ \ \, \hbox{then} \ \ \, \bigcirc \psi \in \Phi_{\varphi}.$
 - [●] For every $\psi \in \{ \Leftrightarrow p, p S q \}$, if $\psi \in \Phi_{\varphi}$ then $\bigcirc \psi \in \Phi_{\varphi}$.
 - $\stackrel{\hspace{0.1em} \circledast}{=} \mathsf{ For every } \psi \in \{ \, \boxminus p, p \ \mathcal{B} \, q \}, \, \mathsf{if } \psi \in \Phi_{\varphi} \, \mathsf{then } \, \odot \psi \in \Phi_{\varphi}.$
- So, the closure Φ_{φ} of a formula φ includes all formulae that are relevant to the truth of φ .

・ 同 ト ・ ヨ ト ・ ヨ ト

Classification of Formulae

V(0)

周 ト イ ヨ ト イ ヨ ト

β	$K_1(\beta)$	$K_2(\beta)$
$p \lor q$	р	q
$\Diamond p$	р	$\bigcirc p$
⇔p	р	$\odot \diamondsuit p$
рUq	q	p, ⊖(p U q
pWq	q	$ p, \bigcirc (p \mathcal{W} q)$
рSq	q	$p, \ominus (p \mathcal{S} q)$
рВq	q	p, ⊝(p B q

α	$K(\alpha)$	
$p \wedge q$	p, q	
$\Box p$	$p, \bigcirc \Box p$	
$\Box p$	$p, \odot \Box p$	

An α -formula φ holds at position j iff all the $K(\varphi)$ -formulae hold at j.

 \cap

A β-formula ψ holds at position j iff either K₁(ψ) or all the K₂(ψ)-formulae (or both) hold at j.

Yih-Kuen Tsay (IM @ NTU)

29 / 42

Atoms

• We define an atom over φ to be a subset $A \subseteq \Phi_{\varphi}$ satisfying the following requirements:

 P_{sat} : the conjunction of all state formulae in A is satisfiable.

- \circledast R_{α} : for every α -formula $p \in \Phi_{\varphi}$, $p \in A$ iff $K(p) \subseteq A$.
- R_β: for every β-formula p ∈ Φ_φ, p ∈ A iff either K₁(p) ∈ A or K₂(p) ⊆ A (or both).
- For example, if atom A contains the formula ¬◊p, it must also contain the formulae ¬p and ¬○◊p.

Mutually Satisfiable Formulae

- A set of formulae $S \subseteq \Phi_{\varphi}$ is called mutually satisfiable if there exists a model σ and a position $j \ge 0$, such that every formula $p \in S$ holds at position j of σ .
- The intended meaning of an atom is that it represents a maximal mutually satisfiable set of formulae.

Claim (atoms represent necessary conditions) Let $S \subseteq \Phi_{\varphi}$ be a mutually satisfiable set of formulae. Then there exists a φ -atom A such that $S \subseteq A$.

It is important to realize that inclusion in an atom is only a necessary condition for mutual satisfiability (e.g., {○p ∨ ○¬p, ○p, ○¬p, p} is an atom for the formula ○p ∨ ○¬p).

Basic Formulae

- A formula is called basic if it is either a proposition or has the form ○p, ○p, or ⊙p.
- Basic formulae are important because their presence or absence in an atom uniquely determines all other closure formulae in the same atom.
- Solution Set Φ⁺_φ denote the set of formulae in Φ_φ that are not of the form ¬ψ.

Algorithm (atom construction)

- Find all basic formulae $p_1, \dots, p_b \in \Phi_{\varphi}^+$.
- *Construct all* 2^{*b*} *combinations.*
- Complete each combination into a full atom.

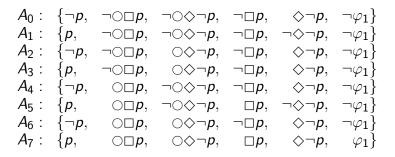
Yih-Kuen Tsay (IM @ NTU)

Example

😚 Consider the formula $arphi_1: \Box p \wedge \diamondsuit \neg p$ whose basic formulae are

 $p, \ \bigcirc \Box p, \ \bigcirc \neg p.$

 $\ref{eq: started of the list of all atoms of <math>arphi_1$:



Yih-Kuen Tsay (IM @ NTU)

Software Development Methods, Fall 2009: Linear Temporal Logic

The Tableau

• Given a formula φ , we construct a directed graph T_{φ} , called the tableau of φ , by the following algorithm.

Algorithm (tableau construction)

- **1** The nodes of T_{φ} are the atoms of φ .
- Atom A is connected to atom B by a directed edge if all of the following are satisfied:
 - **ω**R_○ : For every p ∈ Φ_φ, p ∈ A iff p ∈ B.**ω**R_○ : For every ⊖ p ∈ Φ_φ, p ∈ A iff ⊖ p ∈ B.**ω**R_○ : For every ⊙ p ∈ Φ_φ, p ∈ A iff ⊙ p ∈ B.
- An atom is called initial if it does not contain a formula of the form ⊖p or ¬⊙p (≅ ⊝¬p).

Yih-Kuen Tsay (IM @ NTU)

34 / 42

Example

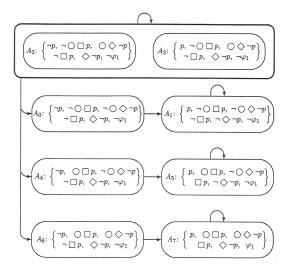


Figure: Tableau T_{φ_1} for $\varphi_1 = \Box p \land \Diamond \neg p$. Source: [Manna and Pnueli 1995].

Yih-Kuen Tsay (IM @ NTU)

Software Development Methods, Fall 2009: Linear Temporal Logic

35 / 42

From the Tableau to a GBA

- Create an initial node and link it to every initial atom that contains φ .
- Label each directed edge with the atomic propositions that are contained in the ending atom.
- Add a set of atoms to the accepting set for each subformula of the following form:

Yih-Kuen Tsay (IM @ NTU)

A (10) A (10)

Correctness: Models vs. Paths

So For a model σ , the infinite atom path π_{σ} : A₀, A₁, · · · in T_{\varphi} is said to be induced by σ if, for every position j ≥ 0 and every closure formula $p \in \Phi_{\varphi}$,

$$(\sigma, j) \models p \text{ iff } p \in A_j.$$

Claim (models induce paths)

Consider a formula φ and its tableau T_{φ} . For every model $\sigma : s_0, s_1, \cdots$, there exists an infinite atom path $\pi_{\sigma} : A_0, A_1, \cdots$ in T_{φ} induced by σ .

Furthermore, A_0 is an initial atom, and if $\sigma \models \varphi$ then $\varphi \in A_0$.

Yih-Kuen Tsay (IM @ NTU)

- ロ ト - 4 同 ト - 4 回 ト - - - 回

Correctness: Promising Formulae

• A formula $\psi \in \Phi_{\varphi}$ is said to promise the formula r if ψ has one of the following forms:

$$\diamond r, p \mathcal{U} r, \neg \Box \neg r, \neg (\neg r \mathcal{W} p).$$

or if r is the negation $\neg q$ and ψ has one of the forms:

$$\neg \Box q, \neg (q \mathcal{W} p).$$

Claim (promise fulfillment by models)

Let σ be a model and ψ , a formula promising r. Then, σ contains infinitely many positions $j \ge 0$ such that

$$(\sigma, j) \models \neg \psi \text{ or } (\sigma, j) \models r.$$

Yih-Kuen Tsay (IM @ NTU)

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ ・

Correctness: Fulfilling Paths

- 📀 Atom A fulfills a formula ψ that promises r if $\neg \psi \in A$ or $r \in A$.
- igle A path π : A_0, A_1, \cdots in the tableau T_arphi is called fulfilling:
 - 🟓 A₀ is an initial atom.
 - For every promising formula ψ ∈ Φ_φ, π contains infinitely many atoms A_j that fulfill ψ.

Claim (models induce fulfilling paths)

If $\pi_{\sigma} : A_0, A_1, \cdots$ is a path induced by a model σ , then π_{σ} is fulfilling.

Correctness: Fulfilling Paths (cont.)

Claim (fulfilling paths induce models)

If $\pi : A_0, A_1, \cdots$ is a fulfilling path in T_{φ} , there exists a model σ inducing π , i.e., $\pi = \pi_{\sigma}$ and, for every $\psi \in \Phi_{\varphi}$ and every $j \ge 0$,

 $(\sigma, j) \models \psi \text{ iff } \psi \in A_j.$

Proposition (satisfiability and fulfilling paths)

Formula φ is satisfiable iff the tableau T_{φ} contains a fulfilling path $\pi = A_0, A_1, \cdots$ such that A_0 is an initial φ -atom.

Yih-Kuen Tsay (IM @ NTU) Software Development Methods, Fall 2009: Linear Temporal Logic

- ロ ト - 4 同 ト - 4 回 ト - - - 回

Concluding Remarks

- PTL can be extended in other ways to be as expressive as Büchi automata, i.e., to express all ω-regular properties.
- For example, the industry standard IEEE 1850 Property Specification Language (PSL) is based on an extension that adds classic regular expressions.
- Regarding translation of a temporal formula into an equivalent Büchi automaton, there have been quite a few algorithms proposed in the past.
- How to obtain an automaton as small as possible remains interesting, for both theoretical and practical reasons.

References

- E.M. Clarke, O. Grumberg, and D.A. Peled. *Model Checking*, The MIT Press, 1999.
- E.A. Emerson. Temporal and modal logic, Handbook of Theoretical Computer Science (Vol. B), MIT Press, 1990.
- G.J. Holzmann. The SPIN Model Checker: Primer and Reference Manual, Addison-Wesley, 2003.
- Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specification, Springer, 1992.
- Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety, Springer, 1995.

< 口 > < 同 > < 三 > < 三 > 、