Linear Temporal Logic

Yih-Kuen Tsay
Dept. of Information Management
National Taiwan University

Outline

- Introduction
- Propositional Temporal Logic (PTL)

Quantified Propositional Temporal Logic (QPTL)

- Basic Properties
- From Temporal Formulae to Automata
, On-the-fly Translation
, Tableau Construction
Concluding Remarks
- References

Introduction

- We have seen how automata, in particular Büchi automata, may be used to describe the behaviors of a concurrent system.
- Büchi automata "localize" temporal dependency between occurrences of events (represented by propositions) to relations between states and tend to be of lower level.
We will study an alternative formalism, namely linear temporal logic.
Temporal logic formulae describe temporal dependency without explicit references to time points and are in general more abstract.

Introduction (cont.)

The above Büchi automaton says that, whenever p holds at some point in time, q must hold at the same time or will hold at a later time.
Note: the alphabet is $\{p q, p \sim q, \sim p q, \sim p \sim q\} ; q$ any input symbol from $\{p q, \sim p q\}$.

- It may not be easy to see that this indeed is the case.
- In linear temporal logic, this can easily be expressed as $\square(p \rightarrow \diamond q)$, which reads "always p implies eventually q ".

PTL: The Future Only

We first look at the future fragment of Propositional Temporal Logic (PTL).
Future operators include \bigcirc (next), \diamond (eventually), \square (always), \mathcal{U} (until), and \mathcal{W} (wait-for).
With \mathcal{W} replaced by \mathcal{R} (release), this fragment is often referred to as LTL (linear temporal logic) in the model checking community.
Let V be a set of boolean variables.

- The future PTL formulae are defined inductively as follows:

泪 Every variable $p \in V$ is a PTL formula.
*) If f and g are PTL formulae, then so are $\neg f, f \vee g, f \wedge g, \bigcirc f, \diamond f$, $\square f, f \mathcal{U} g$, and $f \mathcal{W} g$.
$(\neg f \vee g$ is also written as $f \rightarrow g$ and $(f \rightarrow g) \wedge(g \rightarrow f)$ as $f \leftrightarrow g$.
Examples: $\square\left(\neg C_{0} \vee \neg C_{1}\right), \square\left(T_{1} \rightarrow \diamond C_{1}\right)$.

PTL: The Future Only (cont.)

A PTL formula is interpreted over an infinite sequence of states $\sigma=s_{0} s_{1} s_{2} \cdots$, relative to a position in that sequence.

- A state is a subset of V, containing exactly those variables that evaluate to true in that state.
- If each possible subset of V is treated as a symbol, then a sequence of states can also be viewed as an infinite word over 2^{V}
- The semantics of PTL in terms of $(\sigma, i) \models f$ (f holds at the i-th position of σ) is given below.
We say that a sequence σ satisfies a PTL formula f or σ is a model of f, denoted $\sigma \models f$, if $(\sigma, 0) \models f$.

PTL: The Future Only (cont.)

- For a boolean variable p,
, $(\sigma, i) \vDash p \Longleftrightarrow p \in s_{i}$
- For boolean operators,

$(\sigma, i) \mid=f \vee g \Longleftrightarrow(\sigma, i) \models f$ or $(\sigma, i) \models g$
($\sigma, i) \models f \wedge g \Longleftrightarrow(\sigma, i) \models f$ and $(\sigma, i) \models g$

PTL: The Future Only (cont.)

For future temporal operators,
汭 $(\sigma, i) \models O f \Longleftrightarrow(\sigma, i+1) \models f$

$(\sigma, i) \models \diamond f \Longleftrightarrow$ for some $j \geq i,(\sigma, j) \models f$

* $(\sigma, i) \mid=f \Longleftrightarrow$ for all $j \geq i,(\sigma, j) \models f$

PTL: The Future Only (cont.)

- For future temporal operators (cont.),
$(\sigma, i) \models f \mathcal{U} g \Longleftrightarrow$ for some $k \geq i,(\sigma, k) \models g$ and for all j, $i \leq j<k,(\sigma, j) \models f$

* $(\sigma, i) \mid=f \mathcal{W} g \Longleftrightarrow$ (for some $k \geq i,(\sigma, k) \models g$ and for all j, $i \leq j<k,(\sigma, j) \models f$) or (for all $j \geq i,(\sigma, j) \models f$)
$f \mathcal{W} g$ holds at position i if and only if $f \mathcal{U} g$ or $\square f$ holds at position i.
When \mathcal{R} is preferred over \mathcal{W},
$(\sigma, i)=f \mathcal{R} g \Longleftrightarrow$ for all $j \geq i$, if $(\sigma, k) \not \models f$ for all $k, i \leq k<j$, then $(\sigma, j) \models g$.

PTL: Adding the Past

We now add the past fragment.
Past operators include Θ (before), Θ (previous), \diamond (once), \boxminus (so-far), \mathcal{S} (since), and \mathcal{B} (back-to).

- The full PTL formulae are defined inductively as follows:

Every variable $p \in V$ is a PTL formula.

- If f and g are PTL formulae, then so are $\neg f, f \vee g, f \wedge g, \bigcirc f, \diamond f$, $\square f, f \mathcal{U} g, f \mathcal{W} g, \ominus f, \ominus f, \forall f, \boxminus f, f \mathcal{S} g$, and $f \mathcal{B} g$. $(\neg f \vee g$ is also written as $f \rightarrow g$ and $(f \rightarrow g) \wedge(g \rightarrow f)$ as $f \leftrightarrow g$.
- Examples:
$\square(p \rightarrow \diamond q)$ says "every p is preceded by a q."
$\square(\diamond \neg p \rightarrow \diamond q)$ is another way of saying $p \mathcal{W} q$!

PTL: Adding the Past (cont.)

For past temporal operators,

$$
\begin{aligned}
& (\sigma, i) \models \text { ©f } \Longleftrightarrow i=0 \text { or }(\sigma, i-1) \models f \\
& (\sigma, i) \models \ominus f \Longleftrightarrow i>0 \text { and }(\sigma, i-1) \models f
\end{aligned}
$$

The difference between $\odot f$ and $\ominus f$ occurs at position 0 .
($\sigma, i) \mid=\diamond f \Longleftrightarrow$ for some $j, 0 \leq j \leq i,(\sigma, j) \models f$

$(\sigma, i) \models \boxminus f \Longleftrightarrow$ for all $j, 0 \leq j \leq i,(\sigma, j) \models f$

PTL: Adding the Past (cont.)

For past temporal operators (cont.),
$(\sigma, i) \models f \mathcal{S} g \Longleftrightarrow$ for some $k, 0 \leq k \leq i,(\sigma, k) \models g$ and for all j, $k<j \leq i,(\sigma, j) \models f$

($\sigma, i)=f \mathcal{B} g \Longleftrightarrow$ (for some $k, 0 \leq k \leq i,(\sigma, k) \models g$ and for all $j, k<j \leq i,(\sigma, j) \models f$) or (for all $j, 0 \leq j \leq i,(\sigma, j) \models f$)
$f \mathcal{B} g$ holds at position i if and only if $f \mathcal{S} g$ or $\boxminus f$ holds at position i.

QPTL

- Quantified Propositional Temporal Logic (QPTL) is PTL extended with quantification over boolean variables (so, every PTL formula is also a QPTL formula):
, If f is a QPTL formula and $x \in V$, then $\forall x: f$ and $\exists x: f$ are QPTL formulae.
Let $\sigma=s_{0} s_{1} \cdots$ and $\sigma^{\prime}=s_{0}^{\prime} s_{1}^{\prime} \cdots$ be two sequences of states.
We say that σ^{\prime} is a x-variant of σ if, for every $i \geq 0, s_{i}^{\prime}$ differs from s_{i} at most in the valuation of x, i.e., the symmetric set difference of s_{i}^{\prime} and s_{i} is either $\{x\}$ or empty.
The semantics of QPTL is defined by extending that of PTL with additional semantic definitions for the quantifiers:
$(\sigma, i) \vDash \exists x: f \Longleftrightarrow\left(\sigma^{\prime}, i\right) \vDash f$ for some x-variant σ^{\prime} of σ
($\sigma, i) \mid=\forall x$: $f \Longleftrightarrow\left(\sigma^{\prime}, i\right) \mid=f$ for all x-variant σ^{\prime} of σ

Equivalence and Congruence

A formula p is valid, denoted $\models p$, if $\sigma \models p$ for every σ.

- Two formulae p and q are equivalent if $\models p \leftrightarrow q$, i.e., $\sigma \models p$ if and only if $\sigma \models q$ for every σ.
- Two formulae p and q are congruent, denoted $p \cong q$, if $\models \square(p \leftrightarrow q)$.
Congruence is a stronger relation than equivalence:
, $p \vee \neg p$ and $\neg \ominus(p \vee \neg p)$ are equivalent, as they are both true at position 0 of every model.
* However, they are not congruent; $p \vee \neg p$ holds at all positions of every model, while $\neg \ominus(p \vee \neg p)$ holds only at position 0 .

Congruences

A minimal set of operators:

$$
\neg, \vee, \bigcirc, \mathcal{W}, \Theta, \mathcal{B}
$$

Other operators could be encoded:

$$
\begin{array}{ll}
& \ominus p \cong \neg \ominus \neg p \\
\square p \cong p \mathcal{W} \text { False } & \boxminus p \cong p \mathcal{B} \text { False } \\
\diamond p \cong \neg \square \neg p & \diamond p \cong \neg \neg p \\
p \mathcal{U} q \cong(p \mathcal{W} q \wedge \diamond q) & p \mathcal{S} q \cong(p \mathcal{B} q \wedge \diamond q)
\end{array}
$$

- Weak vs. strong operators:

$$
\begin{array}{ll}
\ominus p \cong(\Theta p \wedge \ominus \text { True }) & \Theta p \cong(\ominus p \wedge \Theta \text { False }) \\
p \mathcal{U} q \cong(p \mathcal{W} q \wedge \diamond q) & p \mathcal{W} q \cong(p \mathcal{U} q \vee \square p) \\
p \mathcal{S} q \cong(p \mathcal{B} q \wedge \diamond q) & p \mathcal{B} q \cong(p \mathcal{S} q \vee \boxminus p)
\end{array}
$$

Congruences (cont.)

Duality:

$$
\begin{aligned}
& \neg \mathrm{O} \cong \bigcirc \neg p \\
& \neg \diamond p \cong \square \neg p \\
& \neg \square p \cong \diamond \neg p \\
& \neg(p \mathcal{U} q) \cong(\neg q) \mathcal{W}(\neg p \wedge \neg q) \quad \neg(p \mathcal{S} q) \cong(\neg q) \mathcal{B}(\neg p \wedge \neg q) \\
& \neg(p \mathcal{U} q) \cong(\neg p) \mathcal{R}(\neg q) \\
& \neg(p \mathcal{W} q) \cong(\neg q) \mathcal{U}(\neg p \wedge \neg q) \quad \neg(p \mathcal{B} q) \cong(\neg q) \mathcal{S}(\neg p \wedge \neg q) \\
& \neg(p \mathcal{R} q) \cong(\neg p) \mathcal{U}(\neg q) \\
& \neg \ominus p \cong \ominus \neg p \\
& \neg \ominus p \cong \ominus \neg p \\
& \neg \ominus p \cong \boxminus \neg p \\
& \neg \boxminus p \cong \ominus \neg p \\
& \begin{array}{l}
\neg \exists x: p \cong \forall x: \neg p \\
\neg \forall x: p \cong \exists x: \neg p
\end{array}
\end{aligned}
$$

A formula is in the negation normal form if negation only occurs in front of an atomic proposition.
Every PTL/QPTL formula can be converted into an equivalent formula in the negation normal form.

Congruences (cont.)

Expansion formulae:

$$
\begin{aligned}
& \square p \cong p \wedge \circ \square p \\
& \diamond p \cong p \vee \circ \diamond p \\
& p \mathcal{U} q \cong q \vee(p \wedge \circ(p \mathcal{U} q)) \\
& p \mathcal{W} q \cong q \vee(p \wedge \circ(p \mathcal{W} q)) \\
& p \mathcal{R} q \cong(q \wedge p) \vee(q \wedge \circ(p \mathcal{R} q))
\end{aligned}
$$

$$
\boxminus p \cong p \wedge \Theta \boxminus p
$$

$$
\diamond p \cong p \vee \Theta \Leftrightarrow p
$$

$$
p \mathcal{S} q \cong q \vee(p \wedge \ominus(p \mathcal{S} q))
$$

These expansion formulae are essential in translation of a temporal formula into an equivalent Büchi automaton.

Congruences (cont.)

- Idempotence:

$$
\begin{array}{ll}
\diamond \diamond p \cong \diamond p & \diamond \diamond p \cong \diamond p \\
\square \square p \cong \square p & \boxminus \square p \cong \boxminus p \\
p \mathcal{U}(p \mathcal{U} q) \cong p \mathcal{U} q & p \mathcal{S}(p \mathcal{S} q) \cong p \mathcal{S} q \\
p \mathcal{W}(p \mathcal{W} q) \cong p \mathcal{W} q & p \mathcal{B}(p \mathcal{B} q) \cong p \mathcal{B} q \\
(p \mathcal{U} q) \mathcal{U} q \cong p \mathcal{U} q & (p \mathcal{S} q) \mathcal{S} q \cong p \mathcal{S} q \\
(p \mathcal{W} q) \mathcal{W} q \cong p \mathcal{W} q & (p \mathcal{B} q) \mathcal{B} q \cong p \mathcal{B} q
\end{array}
$$

Expressiveness

Theorem
PTL is strictly less expressive than Büchi automata.

Proof.

(1) Every PTL formula can be translated into an equivalent Büchi automaton.
(2 " p holds at every even position" is recognizable by a Büchi automaton, but cannot be expressed in PTL.

Theorem
QPTL is expressively equivalent to Büchi automata (and hence ω-regular expressions and S1S).

Simple On-the-fly Translation

This is a tableau-based algorithm for obtaining a Büchi automaton from an LTL (future PTL) formula.
The algorithm is geared towards being used in model checking in an on-the-fly fashion:
It is possible to detect that a property does not hold by only constructing part of the model and of the automaton.

- The algorithm can also be used to check the validity of a temporal logic assertion.
To apply the translation algorithm, we first convert the formula φ into the negation normal form.

Data Structure of an Automaton Node

ID: A string that identifies the node.
Incoming: The incoming edges represented by the IDs of the nodes with an outgoing edge leading to the current node.
New: A set of subformulae that must hold at the current state and have not yet been processed.
-
Old: The subformulae that must hold in the node and have already been processed.
Next: The subformulae that must hold in all states that are immediate successors of states satisfying the properties in Old.

The Algorithm

The algorithm starts with a single node, which has a single incoming edge labeled init (i.e., from an initial node) and expands the nodes in an DFS manner.
This starting node has initially one new obligation in New, namely φ, and Old and Next are initially empty.

- With the current node N, the algorithm checks if there are unprocessed obligations left in New.
- If not, the current node is fully processed and ready to be added to Nodes.
- If there already is a node in Nodes with the same obligations in both its Old and Next fields, the incoming edges of N are incorporated into those of the existing node.

The Algorithm (cont.)

- If no such node exists in Nodes, then the current node N is added to this list, and a new current node is formed for its successor as follows:
(1) There is initially one edge from N to the new node.
(2) New is set initially to the Next field of N.
(3) Old and Next of the new node are initially empty.
- When processing the current node, a formula η in New is removed from this list.
- In the case that η is a literal (a proposition or the negation of a proposition), then
if $\neg \eta$ is in Old, the current node is discarded; otherwise, η is added to Old.

The Algorithm（cont．）

When η is not a literal，the current node can be split into two or not split，and new formulae can be added to the fields New and Next．
The exact actions depend on the form of η ：
港 $\eta=p \wedge q$ ，then both p and q are added to New．
$\eta=p \vee q$ ，then the node is split，adding p to New of one copy，and q to the other．
数 $\eta=p \mathcal{U} q(\cong q \vee(p \wedge \bigcirc(p \mathcal{U} q)))$ ，then the node is split．
For the first copy，p is added to New and $p \mathcal{U} q$ to Next．
For the other copy，q is added to New．
$\eta=p \mathcal{R} q(\cong(q \wedge p) \vee(q \wedge \bigcirc(p \mathcal{R} q)))$ ，similar to \mathcal{U} ．
沮 $\eta=\bigcirc p$ ，then p is added to Next．

Nodes to GBA

The list of nodes in Nodes can now be converted into a generalized Büchi automaton $B=\left(\Sigma, Q, q_{0}, \Delta, F\right)$:
(1) Σ consists of sets of propositions from $A P$.
(2) The set of states Q includes the nodes in Nodes and the additional initial state q_{0}.
(3) $\left(r, \alpha, r^{\prime}\right) \in \Delta$ iff $r \in \operatorname{Incoming}\left(r^{\prime}\right)$ and α satisfies the conjunction of the negated and nonnegated propositions in Old $\left(r^{\prime}\right)$
(9) q_{0} is the initial state, playing the role of init.
(5) F contains a separate set F_{i} of states for each subformula of the form $p \mathcal{U} q ; F_{i}$ contains all the states r such that either $q \in \operatorname{Old}(r)$ or $p \mathcal{U} q \notin \operatorname{Old}(r)$.

Tableau Construction

We next study the Tableau Construction as described in [Manna and Pnueli 1995], which handles both future and past temporal operators.
-
More efficient constructions exist, but this construction is relatively easy to understand.

- A tableau is a graphical representation of all models/sequences that satisfy the given temporal logic formula.
The construction results in essentially a GBA, but leaving propositions on the states (rather than moving them to the incoming edges of a state).
Our presentation will be slightly different, to make the resulting GBA more apparent.

Expansion Formulae

The requirement that a temporal formula holds at a position j of a model can often be decomposed into requirements that

粚 a simpler formula holds at the same position and
, some other formula holds either at $j+1$ or $j-1$.

- For this decomposition, we have the following expansion formulae:

$$
\begin{array}{ll}
\square p \cong p \wedge \circ \square p & \boxminus p \cong p \wedge \ominus \boxminus p \\
\diamond p \cong p \vee \circ \diamond p & \diamond p \cong p \vee \Theta \diamond p \\
p \mathcal{U} q \cong q \vee(p \wedge \circ(p \mathcal{U} q)) & p \mathcal{S} \cong \cong q \vee(p \wedge \Theta(p \mathcal{S} q)) \\
p \mathcal{W} q \cong q \vee(p \wedge \circ(p \mathcal{W} q)) & p \mathcal{B} q \cong q \vee(p \wedge \Theta(p \mathcal{B} q))
\end{array}
$$

Note: this construction does not deal with \mathcal{R}.

Closure

We define the closure of a formula φ, denoted by Φ_{φ}, as the smallest set of formulae satisfying the following requirements:
$\varphi \in \Phi_{\varphi}$.

* For every $p \in \Phi_{\varphi}$, if q a subformula of p then $q \in \Phi_{\varphi}$.
, For every $p \in \Phi_{\varphi}, \neg p \in \Phi_{\varphi}$.
. For every $\psi \in\{\square p, \diamond p, p \mathcal{U} q, p \mathcal{W} q\}$, if $\psi \in \Phi_{\varphi}$ then $\bigcirc \psi \in \Phi_{\varphi}$.
. For every $\psi \in\{\forall p, p \mathcal{S} q\}$, if $\psi \in \Phi_{\varphi}$ then $\Theta \psi \in \Phi_{\varphi}$.
For every $\psi \in\{\boxminus p, p \mathcal{B} q\}$, if $\psi \in \Phi_{\varphi}$ then $\Theta \psi \in \Phi_{\varphi}$.
So, the closure Φ_{φ} of a formula φ includes all formulae that are relevant to the truth of φ.

Classification of Formulae

α	$K(\alpha)$
$p \wedge q$	p, q
$\square p$	$p, \circ \square p$
$\boxminus p$	$p, \ominus \boxminus p$

β	$K_{1}(\beta)$	$K_{2}(\beta)$
$p \vee q$	p	q
$\diamond p$	p	$\bigcirc \diamond p$
$\diamond p$	p	$\Theta \diamond p$
$p \mathcal{U} q$	q	$p, \bigcirc(p \mathcal{U} q)$
$p \mathcal{W} q$	q	$p, \bigcirc(p \mathcal{W} q)$
$p \mathcal{S} q$	q	$p, \Theta(p \mathcal{S} q)$
$p \mathcal{B} q$	q	$p, \Theta(p \mathcal{B} q)$

An α-formula φ holds at position j iff all the $K(\varphi)$-formulae hold at j.
A β-formula ψ holds at position j iff either $K_{1}(\psi)$ or all the $K_{2}(\psi)$-formulae (or both) hold at j.

Atoms

We define an atom over φ to be a subset $A \subseteq \Phi_{\varphi}$ satisfying the following requirements:
. $R_{\text {sat }}$: the conjunction of all state formulae in A is satisfiable.
, R_{\neg} : for every $p \in \Phi_{\varphi}, p \in A$ iff $\neg p \notin A$.
, R_{α} : for every α-formula $p \in \Phi_{\varphi}, p \in A$ iff $K(p) \subseteq A$.
R_{β} : for every β-formula $p \in \Phi_{\varphi}, p \in A$ iff either $K_{1}(p) \in A$ or
$K_{2}(p) \subseteq A$ (or both).
For example, if atom A contains the formula $\neg \diamond p$, it must also contain the formulae $\neg p$ and $\neg \bigcirc \diamond p$.

Mutually Satisfiable Formulae

A set of formulae $S \subseteq \Phi_{\varphi}$ is called mutually satisfiable if there exists a model σ and a position $j \geq 0$, such that every formula $p \in S$ holds at position j of σ.

- The intended meaning of an atom is that it represents a maximal mutually satisfiable set of formulae.

Claim (atoms represent necessary conditions)
Let $S \subseteq \Phi_{\varphi}$ be a mutually satisfiable set of formulae. Then there exists a φ-atom A such that $S \subseteq A$.

- It is important to realize that inclusion in an atom is only a necessary condition for mutual satisfiability (e.g., $\{\bigcirc p \vee \bigcirc \neg p, \bigcirc p, \bigcirc \neg p, p\}$ is an atom for the formula $\bigcirc p \vee \bigcirc \neg p)$.

Basic Formulae

- A formula is called basic if it is either a proposition or has the form $\bigcirc p, \ominus p$, or Θp.
Basic formulae are important because their presence or absence in an atom uniquely determines all other closure formulae in the same atom.
Let Φ_{φ}^{+}denote the set of formulae in Φ_{φ} that are not of the form $\neg \psi$.

Algorithm (atom construction)
(1) Find all basic formulae $p_{1}, \cdots, p_{b} \in \Phi_{\varphi}^{+}$.
(2) Construct all 2^{b} combinations.
(3) Complete each combination into a full atom.

Example

Consider the formula $\varphi_{1}: \square p \wedge \diamond \neg p$ whose basic formulae are

$$
p, \circ \square p, \bigcirc \diamond \neg p .
$$

- Following is the list of all atoms of φ_{1} :

$$
\begin{aligned}
& A_{0}:\left\{\neg p, \neg \circ \square p, \neg \bigcirc \diamond \neg p, \neg \square p, \quad \diamond \neg p, \neg \varphi_{1}\right\} \\
& A_{1}:\left\{p, \quad \neg \circ \square p, \neg \bigcirc \diamond \neg p, \neg \square p, \neg \diamond \neg p, \neg \varphi_{1}\right\} \\
& A_{2}:\left\{\neg p, \quad \neg \bigcirc \square p, \quad \bigcirc \diamond \neg p, \neg \square p, \quad \diamond \neg p, \neg \varphi_{1}\right\} \\
& A_{3}:\left\{p, \quad \neg \circ \square p, \quad \bigcirc \diamond \neg p, \neg \square p, \quad \diamond \neg p, \quad \neg \varphi_{1}\right\} \\
& A_{4}:\left\{\neg p, \quad \circ \square p, \quad \neg \bigcirc \diamond \neg p, \neg \square p, \quad \diamond \neg p, \neg \varphi_{1}\right\} \\
& A_{5}:\left\{p, \quad \circ \square p, \neg \bigcirc \diamond \neg p, \quad \square p, \neg \diamond \neg p, \neg \varphi_{1}\right\} \\
& A_{6}:\left\{\neg p, \quad \circ \square p, \quad \bigcirc \diamond \neg p, \quad \neg \square p, \quad \diamond \neg p, \quad \neg \varphi_{1}\right\} \\
& A_{7}:\left\{p, \quad \circ \square p, \quad \bigcirc \diamond \neg p, \quad \square p, \quad \diamond \neg p, \quad \varphi_{1}\right\}
\end{aligned}
$$

The Tableau

Given a formula φ, we construct a directed graph T_{φ}, called the tableau of φ, by the following algorithm.

Algorithm (tableau construction)
(1) The nodes of T_{φ} are the atoms of φ.
(2) Atom A is connected to atom B by a directed edge if all of the following are satisfied:
(4) R_{\bigcirc} : For every $O p \in \Phi_{\varphi}, \bigcirc p \in A$ iff $p \in B$.
(4) R_{\ominus} : For every $\Theta p \in \Phi_{\varphi}, p \in A$ iff $\Theta p \in B$.
(1) R_{Θ} : For every $\Theta p \in \Phi_{\varphi}, p \in A$ iff $\Theta p \in B$.

An atom is called initial if it does not contain a formula of the form Θp or $\neg \Theta p(\cong \Theta \neg p)$.

Example

Figure: Tableau $T_{\varphi_{1}}$ for $\varphi_{1}=\square p \wedge \diamond \neg p$. Source: [Manna and Pnueli 1995].

From the Tableau to a GBA

Create an initial node and link it to every initial atom that contains φ.

- Label each directed edge with the atomic propositions that are contained in the ending atom.
- Add a set of atoms to the accepting set for each subformula of the following form:
© $\diamond q$: atoms with q or $\neg \diamond q$.
$p \mathcal{U} q$: atoms with q or $\neg(p \mathcal{U} q)$.
$\neg \square \neg q(\cong \diamond q)$: atoms with q or $\square \neg q$.
$\neg(\neg q \mathcal{W} p)(\cong \neg p \mathcal{U}(q \wedge \neg p))$: atoms with q or $\neg q \mathcal{W} p$.
$\neg \square q(\cong \diamond \neg q):$ atoms with $\neg q$ or $\square q$.
$\neg(q \mathcal{W} p)(\cong \neg p \mathcal{U}(\neg q \wedge \neg p))$: atoms with $\neg q$ or $q \mathcal{W} p$.

Correctness: Models vs. Paths

For a model σ, the infinite atom path $\pi_{\sigma}: A_{0}, A_{1}, \cdots$ in T_{φ} is said to be induced by σ if, for every position $j \geq 0$ and every closure formula $p \in \Phi_{\varphi}$,

$$
(\sigma, j) \models p \text { iff } p \in A_{j}
$$

Claim (models induce paths)
Consider a formula φ and its tableau T_{φ}. For every model $\sigma: s_{0}, s_{1}, \cdots$, there exists an infinite atom path $\pi_{\sigma}: A_{0}, A_{1}, \cdots$ in T_{φ} induced by σ.
Furthermore, A_{0} is an initial atom, and if $\sigma \models \varphi$ then $\varphi \in A_{0}$.

Correctness: Promising Formulae

A formula $\psi \in \Phi_{\varphi}$ is said to promise the formula r if ψ has one of the following forms:

$$
\diamond r, p \mathcal{U} r, \neg \square \neg r, \neg(\neg r \mathcal{W} p)
$$

or if r is the negation $\neg q$ and ψ has one of the forms:

$$
\neg \square q, \neg(q \mathcal{W} p)
$$

Claim (promise fulfillment by models)
Let σ be a model and ψ, a formula promising r. Then, σ contains infinitely many positions $j \geq 0$ such that

$$
(\sigma, j) \models \neg \psi \text { or }(\sigma, j) \models r .
$$

Correctness: Fulfilling Paths

Atom A fulfills a formula ψ that promises r if $\neg \psi \in A$ or $r \in A$.
A path $\pi: A_{0}, A_{1}, \cdots$ in the tableau T_{φ} is called fulfilling:
, A_{0} is an initial atom.
*) For every promising formula $\psi \in \Phi_{\varphi}, \pi$ contains infinitely many atoms A_{j} that fulfill ψ.

Claim (models induce fulfilling paths)
If $\pi_{\sigma}: A_{0}, A_{1}, \cdots$ is a path induced by a model σ, then π_{σ} is fulfilling.

Correctness: Fulfilling Paths (cont.)

Claim (fulfilling paths induce models)
If $\pi: A_{0}, A_{1}, \cdots$ is a fulfilling path in T_{φ}, there exists a model σ inducing π, i.e., $\pi=\pi_{\sigma}$ and, for every $\psi \in \Phi_{\varphi}$ and every $j \geq 0$,

$$
(\sigma, j) \models \psi \text { iff } \psi \in A_{j} .
$$

Proposition (satisfiability and fulfilling paths)
Formula φ is satisfiable iff the tableau T_{φ} contains a fulfilling path $\pi=A_{0}, A_{1}, \cdots$ such that A_{0} is an initial φ-atom.

Concluding Remarks

PTL can be extended in other ways to be as expressive as Büchi automata, i.e., to express all ω-regular properties.
For example, the industry standard IEEE 1850 Property Specification Language (PSL) is based on an extension that adds classic regular expressions.
Regarding translation of a temporal formula into an equivalent Büchi automaton, there have been quite a few algorithms proposed in the past.

- How to obtain an automaton as small as possible remains interesting, for both theoretical and practical reasons.

References

E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking, The MIT Press, 1999.
E.A. Emerson. Temporal and modal logic, Handbook of Theoretical Computer Science (Vol. B), MIT Press, 1990.
G.J. Holzmann. The SPIN Model Checker: Primer and Reference Manual, Addison-Wesley, 2003.
Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specification, Springer, 1992.
Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety, Springer, 1995.

