First-Order Logic

(Based on [Gallier 1986], [Goubault-Larrecq and Mackie 1997], and [Huth and Ryan 2004])

Yih-Kuen Tsay

Dept. of Information Management
National Taiwan University

Introduction

- Logic concerns mainly two concepts: truth and provability (of truth from assumed truth).
- Formal (symbolic) logic approaches logic by rules for manipulating symbols:
 - Syntax rules: for writing statements (or formulae).
 - Semantic rules: for giving meanings (truth values) to statements.
 - Inference rules: for obtaining true statements from other true statements.
- We shall introduce two main branches of formal logic: propositional logic and first-order logic.
- The following slides cover first-order logic.

Predicates

- A predicate is a "parameterized" statement that, when supplied with actual arguments, is either true or false such as the following:
 - Leslie is a teacher.
 - Chris is a teacher.
 - Leslie is a pop singer.
 - Chris is a pop singer.
- Like propositions, simplest (atomic) predicates may be combined to form compound predicates.

Inferences

- We are given the following assumptions:
 - For any person, either the person is not a teacher or the person is not rich.
 - * For any person, if the person is a pop singer, then the person is rich.
- We wish to conclude the following:
 - * For any person, if the person is a teacher, then the person is not a pop singer.

Symbolic Predicates

- Like propositions, predicates are represented by symbols.
 - p(x): x is a teacher.
 - price q(x): x is rich.
 - prices r(y): y is a pop singer.
- Compound predicates can be expressed:
 - ** For all x, $r(x) \rightarrow q(x)$: For any person, if the person is a pop singer, then the person is rich.
 - ** For all $y, p(y) \rightarrow \neg r(y)$: For any person, if the person is a teacher, then the person is not a pop singer.

Symbolic Inferences

- We are given the following assumptions:
 - \clubsuit For all $x, \neg p(x) \lor \neg q(x)$.
 - \clubsuit For all $x, r(x) \rightarrow q(x)$.
- We wish to conclude the following:
 - \clubsuit For all $x, p(x) \rightarrow \neg r(x)$.
- To check the correctness of the inference above, we ask:

Is ((for all $x, \neg p(x) \lor \neg q(x)$) \land (for all $x, r(x) \to q(x)$)) \to (for all $x, p(x) \to \neg r(x)$) valid?

First-Order Logic: Syntax

- Logical symbols:
 - \clubsuit A countable set V of variables: x, y, z, ...;
 - ***** Logical connectives (operators): \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \bot , \forall (for all), \exists (there exists);
 - Auxiliary symbols: "(", ")".
- Non-logical symbols:
 - A countable set of function symbols with associated ranks (arities);
 - * A countable set of constants;
 - A countable set of predicate symbols with associated ranks (arities);
- We refer to a first-order language as Language L, where L is the set of non-logical symbols (e.g., $\{+,0,1,<\}$).

First-Order Logic: Syntax (cont.)

- Terms:
 - Every constant and every variable is a term.
 - ## If t_1, t_2, \dots, t_k are terms and f is a k-ary function symbol (k > 0), then $f(t_1, t_2, \dots, t_k)$ is a term.
- Atomic formulae:
 - # Every *predicate symbol* of 0-arity is an atomic formula and so is \bot .
 - # If t_1, t_2, \dots, t_k are terms and p is a k-ary predicate symbol (k > 0), then $p(t_1, t_2, \dots, t_k)$ is an atomic formula.
- \bullet For example, consider Language $\{+,0,1,<\}$.
 - 0, x, x + 1, x + (x + 1), etc. are terms.
 - $\not \gg 0 < 1$, x < (x + 1), etc. are atomic formulae.

First-Order Logic: Syntax (cont.)

- Formulae:
 - Every atomic formula is a formula.
 - # If A and B are formulae, then so are $\neg A$, $(A \land B)$, $(A \lor B)$, $(A \lor B)$, and $(A \leftrightarrow B)$.
 - # If x is a variable and A is a formula, then so are $\forall xA$ and $\exists xA$.
- First-order logic with equality includes equality (=) as an additional logical symbol, which behaves like a predicate symbol.
- Example formulae in Language {+,0,1,<}:</p>
 - $(0 < x) \lor (x < 1)$
 - $\Rightarrow \forall x(\exists y(x+y=0))$

First-Order Logic: Syntax (cont.)

We may give the logical connectives different binding powers, or precedences, to avoid excessive parentheses, usually in this order:

$$\neg, \{\forall, \exists\}, \{\land, \lor\}, \rightarrow, \leftrightarrow.$$

For example, $(A \wedge B) \rightarrow C$ becomes $A \wedge B \rightarrow C$.

- Common Abbreviations:
 - x = y = z means $x = y \land y = z$.
 - $p \to q \to r$ means $p \to (q \to r)$. Implication associates to the right, so do other logical symbols.
 - $\Rightarrow \forall x, y, zA \text{ means } \forall x(\forall y(\forall zA)).$

Free and Bound Variables

- In a formula $\forall xA$ (or $\exists xA$), the variable x is bound by the quantifier \forall (or \exists).
- A free variable is one that is not bound.
- The same variable may have both a free and a bound occurrence.
- For example, consider $(\forall x(R(x,\underline{y}) \to P(x)) \land \forall y(\neg R(\underline{x},y) \land \forall xP(x)))$. The underlined occurrences of x and y are free, while others are bound.
- A formula is *closed*, also called a *sentence*, if it does not contain a free variable.

Free Variables Formally Defined

For a term t, the set FV(t) of free variables of t is defined inductively as follows:

- $FV(x) = \{x\},$ for a variable x;
- $FV(c) = \emptyset$, for a contant c;
- $FV(f(t_1,t_2,\cdots,t_n)) = FV(t_1) \cup FV(t_2) \cup \cdots \cup FV(t_n)$, for an n-ary function f applied to n terms t_1,t_2,\cdots,t_n .

Free Variables Formally Defined (cont.)

For a formula A, the set FV(A) of free variables of A is defined inductively as follows:

- $FV(P(t_1, t_2, \dots, t_n)) = FV(t_1) \cup FV(t_2) \cup \dots \cup FV(t_n)$, for an n-ary predicate P applied to n terms t_1, t_2, \dots, t_n ;
- $FV(t_1 = t_2) = FV(t_1) \cup FV(t_2);$
- $FV(B*C) = FV(B) \cup FV(C)$, where $* \in \{\land, \lor, \rightarrow, \leftrightarrow\}$;
- $FV(\perp) = \emptyset;$
- $FV(\forall xB) = FV(B) \{x\};$
- $FV(\exists xB) = FV(B) \{x\}.$

Bound Variables Formally Defined

For a formula A, the set BV(A) of bound variables in A is defined inductively as follows:

- $\Theta(P(t_1,t_2,\cdots,t_n))=\emptyset$, for an n-ary predicate P applied to n terms t_1,t_2,\cdots,t_n ;
- $BV(t_1 = t_2) = \emptyset;$
- $BV(B*C) = BV(B) \cup BV(C)$, where $* \in \{\land, \lor, \rightarrow, \leftrightarrow\}$;
- Θ $BV(\perp) = \emptyset$;

Substitutions

- \bullet Let t be a term and A a formula.
- The result of substituting t for a free variable x in A is denoted by A[t/x].
- Consider $A = \forall x (P(x) \rightarrow Q(x, f(y)))$.
 - \clubsuit When t = g(y), $A[t/y] = \forall x (P(x) \rightarrow Q(x, f(g(y))))$.
 - * For any t, $A[t/x] = \forall x (P(x) \rightarrow Q(x, f(y))) = A$, since there is no free occurrence of x in A.
- A substitution is *admissible* if no free variable of *t* would become bound after the substitution.
- For example, when t = g(x, y), A[t/y] is not admissible, as the free variable x of t would become bound.

Substitutions Formally Defined

Let s and t be terms. The result of substituting t in s for a variable x, denoted s[t/x], is defined inductively as follows:

- x[t/x] = t;
- y[t/x] = y, for a variable y that is not x;
- c[t/x] = c, for a contant c;
- $f(t_1, t_2, \dots, t_n)[t/x] = f(t_1[t/x], t_2[t/x], \dots, t_n[t/x])$, for an n-ary function f applied to n terms t_1, t_2, \dots, t_n .

Substitutions Formally Defined (cont.)

For a formula A, A[t/x] is defined inductively as follows:

- $P(t_1, t_2, \dots, t_n)[t/x] = P(t_1[t/x], t_2[t/x], \dots, t_n[t/x])$, for an n-ary predicate P applied to n terms t_1, t_2, \dots, t_n ;
- $(t_1 = t_2)[t/x] = (t_1[t/x] = t_2[t/x]);$
- $(B*C)[t/x] = (B[t/x]*C[t/x]), \text{ where } * \in \{\land, \lor, \to, \leftrightarrow\};$
- $(\forall xB)[t/x] = (\forall xB);$
- $(\forall yB)[t/x] = (\forall yB[t/x]), \text{ if variable } y \text{ is not } x;$
- $(\exists xB)[t/x] = (\exists xB);$

First-Order Structures

- A first-order structure \mathcal{M} is a pair (M, I), where
 - * M (a non-empty set) is the *domain* of the structure, and
 - # I is the *interpretation function*, that assigns functions and predicates over M to the function and predicate symbols.
- An interpretation may be represented by simply listing the functions and predicates.
- For instance, $(Z, \{+_Z, 0_Z\})$ is a structure for the language $\{+, 0\}$. The subscripts are omitted, as $(Z, \{+, 0\})$, when no confusion may arise.

Semantics of First-Order Logic

- Since a formula may contain free variables, its truth value depends on the specific values that are assigned to these variables.
- Given a first-order language and a structure $\mathcal{M} = (M, I)$, an assignment is a function from the set of variables to M.
- The structure \mathcal{M} along with an assignment s determines the truth value of a formula A, denoted as $A_{\mathcal{M}}[s]$.
- For example, $(x + 0 = x)_{(Z,\{+,0\})}[x := 1]$ evaluates to T.

Semantics of First-Order Logic (cont.)

- We say $\mathcal{M}, s \models A$ when $A_{\mathcal{M}}[s]$ is T (true) and $\mathcal{M}, s \not\models A$ otherwise.
- Alternatively, |= may be defined as follows (propositional part is as in propositional logic):

$$\mathcal{M}, s \models \forall x A \iff \mathcal{M}, s[x := m] \models A \text{ for all } m \in M.$$
 $\mathcal{M}, s \models \exists x A \iff \mathcal{M}, s[x := m] \models A \text{ for some } m \in M.$ where $s[x := m]$ denotes an updated assignment s' from s such that $s'(y) = s(y)$ for $y \neq x$ and $s'(x) = m$.

• For example, $(Z, \{+, 0\}), s \models \forall x (x + 0 = x)$ holds, since $(Z, \{+, 0\}), s[x := m] \models x + 0 = x$ for all $m \in Z$.

Satisfiability and Validity

- A formula A is satisfiable in \mathcal{M} if there is an assignment s such that $\mathcal{M}, s \models A$.
- A formula A is valid in \mathcal{M} , denoted $\mathcal{M} \models A$, if $\mathcal{M}, s \models A$ for every assignment s.
- For instance, $\forall x(x+0=x)$ is valid in $(Z,\{+,0\})$.
- \bigcirc \mathcal{M} is called a *model* of A if A is valid in \mathcal{M} .
- A formula A is *valid* if it is valid in every structure, denoted $\models A$.

Relating the Quantifiers

Lemma.

$$\models \neg \forall x A \leftrightarrow \exists x \neg A$$

$$\models \neg \exists x A \leftrightarrow \forall x \neg A$$

$$\models \forall x A \leftrightarrow \neg \exists x \neg A$$

$$\models \exists x A \leftrightarrow \neg \forall x \neg A$$

Note: These equivalences show that, with the help of negation, either quantifier can be expressed by the other.

The Sequent Calculus: Quantifier Rules

$$\frac{\Gamma, A[t/x] \vdash \Delta}{\Gamma, \forall x A \vdash \Delta} (\forall L) \qquad \frac{\Gamma \vdash A[y/x], \Delta}{\Gamma \vdash \forall x A, \Delta} (\forall R)$$

$$\frac{\Gamma, A[y/x] \vdash \Delta}{\Gamma, \exists xA \vdash \Delta} (\exists L) \qquad \frac{\Gamma \vdash A[t/x], \Delta}{\Gamma \vdash \exists xA, \Delta} (\exists R)$$

In the rules above, we assume that all substitutions are admissible, y is not free in A, and y does not occur free in the lower sequent.

Soundness and Completeness

The quantifier rules, together with the structural rules, logical rules, and axioms introduced in Part I (Propositional Logic), constitute Gentzen's System LK.

Theorem.

System LK is *sound*, i.e., if a sequent $\Gamma \vdash \Delta$ is provable in LK, then $\Gamma \vdash \Delta$ is valid.

Theorem.

System LK is *complete*, i.e., if a sequent $\Gamma \vdash \Delta$ is valid, then $\Gamma \vdash \Delta$ is provable in LK.

Note: assume no equality in the logic language.

Compactness

Theorem.

For any (possibly infinite) set Γ of formulae, if every finite non-empty subset of Γ is satisfiable then Γ is satisfiable.

Consistency

Recall that a set Γ of formulae is *consistent* if there exists some formula B such that the sequent $\Gamma \vdash B$ is not provable. Otherwise, Γ is *inconsistent*.

Lemma.

For System LK, a set Γ of formulae is inconsistent if and only if there is some formula A such that both $\Gamma \vdash A$ and $\Gamma \vdash \neg A$ are provable.

Theorem.

For System LK, a set Γ of formulae is satisfiable if and only if Γ is consistent.

The Sequent Calculus: Axioms for Equality

Let $t, s_1, \dots, s_n, t_1, \dots, t_n$ be arbitrary terms.

$$\vdash t = t$$

For every n-ary function f,

$$s_1 = t_1, \dots, s_n = t_n \vdash f(s_1, \dots, s_n) = f(t_1, \dots, t_n)$$

For every n-ary predicate P (including =),

$$s_1 = t_1, \dots, s_n = t_n, P(s_1, \dots, s_n) \vdash P(t_1, \dots, t_n)$$

Note: The = sign is part of the object language, not a meta symbol.

Theory

Assume a fixed first-order language.

A set S of sentences is closed under provability if

 $S = \{A \mid A \text{ is a sentence and } S \vdash A \text{ is provable}\}.$

- A set of sentences is called a theory if it is closed under provability.
- A theory is typically represented by a smaller set of sentences, called its <u>axioms</u>.

Group as a First-Order Theory

- The set of non-logical symbols is $\{\cdot, e\}$, where \cdot is a binary function (operation) and e is a constant (the identity).
- Axioms:

$$\forall a, b, c(a \cdot (b \cdot c) = (a \cdot b) \cdot c)$$
 (Associativity)
 $\forall a(a \cdot e = e \cdot a = a)$ (Identity)
 $\forall a(\exists b(a \cdot b = b \cdot a = e))$ (Inverse)

- \bigcirc $(Z, \{+, 0\})$ and $(Q \setminus \{0\}, \{\times, 1\})$ are models of the theory.
- Additional axiom for Abelian groups:
 - $\Rightarrow \forall a, b(a \cdot b = b \cdot a)$ (Commutativity)

Quantifier Rules of Natural Deduction

$$\frac{\Gamma \vdash A[y/x]}{\Gamma \vdash \forall xA} (\forall I) \qquad \frac{\Gamma \vdash \forall xA}{\Gamma \vdash A[t/x]} (\forall E)$$

$$\frac{\Gamma \vdash A[t/x]}{\Gamma \vdash \exists x A} (\exists I) \qquad \frac{\Gamma \vdash \exists x A \qquad \Gamma, A[y/x] \vdash B}{\Gamma \vdash B} (\exists E)$$

In the rules above, we assume that all substitutions are admissible and y does not occur free in Γ or A.

Equality Rules of Natural Deduction

Let t, t_1, t_2 be arbitrary terms; again, assume all substitutions are admissible.

$$\frac{\Gamma \vdash t = t}{\Gamma \vdash t = t} (= I) \qquad \frac{\Gamma \vdash t_1 = t_2 \quad \Gamma \vdash A[t_1/x]}{\Gamma \vdash A[t_2/x]} (= E)$$

Note: The = sign is part of the object language, not a meta symbol.

