
Software Development Methods [Compiled on September 17, 2009] Fall 2009

Course Information and Syllabus

This course introduces a selection of theories, practices, and tools that, we believe, will enhance
the student’s ability in developing correct and high quality software. The view taken here is
that of an engineer (programmer, software engineer, or software architect) and hence the focus
of the course is primarily on the technical aspects of software development process.

Instructor

Yih-Kuen Tsay (|Ç�), Room 1108, Management II, 3366-1189, tsay@im.ntu.edu.tw

Lectures

Thursday 9:10–12:10, Room 101, College of Management, Building I

Office Hours

Wednesday 1:30–2:30PM or by appointment

TA

Yi-Wen Chang (ðOZ), 3366-1205, r97725004@ntu.edu.tw

Prerequisites

Object-Oriented Programming and Discrete Mathematics

Textbook

Class Notes and Selected Readings

Syllabus/Schedule

The goal of this course is to acquaint the students with some of the well-used methods and
tools for practical software development as well as some fundamentals of software verifi-
cation, so as to prepare them for a career in software development. After an introduction
of the subject matters and a brief glimpse of formal logic and program correctness, we
will study in great detail the UML, design patterns, and some fundamental elements of
formal software verification and analysis.

• Introduction (.5 week: 09/17a)
overview of software requirements, development process, design methods, and test-
ing/verification tools

• Formal Logic (1.5 weeks: 09/17b, 09/24)
propositional logic (satisfiability, tautologies, deduction/proofs), first-order logic (va-
lidity, deduction/proofs, soundness, completeness)

• Program Correctness (1 week: 10/01)
axiomatic semantics of programs (assertions, pre/post-conditions, invariants), par-
tial and total correctness

1



• UML – Part I (2 weeks: 10/08, 10/15)
introduction, basics of modeling, overview of the UML, structural modeling (class
diagrams, classifiers, interfaces, packages, object diagrams), behavioral modeling (in-
teractions, use case diagrams, interaction diagrams, activity diagrams), architectural
modeling (components, collaborations, patterns, frameworks, component diagrams,
deployment diagrams)

• Design Patterns (Guest Instructors: Jeffrey CH Liu, Clement CW Su, and Jim
CL Yu, IBM) (4 weeks: 10/22, 10/29, 11/05, 11/12)

1. introduction (use case, design document, development tool), creational patterns
(abstract factory, builder, factory method, prototype, singleton)

2. behavioral patterns I (chain of responsibility, command, interpreter, iterator,
mediator, memento, observer, state)

3. behavioral patterns II (strategy, template method, visitor), structural patterns
(adapter, bridge, composite, decorator, facade, flyweight, proxy)

4. architecture review, design document wrap-up, other topics (anti-patterns, ad-
vanced patterns, refactoring)

• Web Programming and Software Security (1 week: 11/19)
dynamic Web pages, client-server interactions, common security vulnerabilities, pat-
terns, frameworks

• UML – Part II (2 weeks: 11/26, 12/3)
advanced behavioral modeling (events, state machines, processes and threads, state-
chart diagrams), Object Constraint Language (OCL)

• Software Modeling Tools (1 week: 12/10)
Alloy (software modeling, simulation, and checking)

• Midterm (2009/12/17)

• Software Model Checking (2 weeks: 12/24, 12/31)
linear-time model checking (Kripke structure, linear temporal logic, Büchi automata,
automata-theoretic algorithms), Spin (Promela, never-claims), JPF (Java Pathfinder)

• Term Project Presentations (2010/01/07)

• Program Verification Tools (1 week: 01/14)
Spec#, JML (Java Modeling Language) tools (Common JML Tools, ESC/Java2 )

Web Site

http://www.im.ntu.edu.tw/~tsay/courses/sdm/

Grading

Homework 20%, Midterm 40%, Term Project 40%.

References

[1] Logic for Computer Science: Foundations of Automatic Theorem Proving, J.H. Gal-
lier, Harper & Row Publishers, 1985. (free!)

[2] Logic in Computer Science: Modelling and Reasoning about Systems, M. Huth and
M. Ryan, Cambridge University Press, 2004.

[3] The UML Resource Page: http://www.uml.org/, OMG.

2



[4] The Unified Modeling Language User Guide, 2nd Edition, G. Booch, I. Jacobson,
and J. Rumbaugh, Addison-Wesley, 2005.

[5] Design Patterns: Elements of Reusable Object-Oriented Software, E. Gamma, R. Helm,
R. Johnson, and J. Vlissides, Addison-Wesley, 1995.

[6] Software Abstractions: Logic, Language, and Analysis, D. Jackson, MIT Press, 2006.

[7] The SPIN Model Checker: Primer and Reference Manual, G.J. Holzman, Addison-
Wesley, 2003.

[8] Spin - Formal Verification Page: http://spinroot.com/.

[9] Temporal Verification of Reactive Systems: Safety, Z. Manna and A. Pnueli, Springer-
Verlag, 1995.

[10] The Formal Methods Page: http://formalmethods.wikia.com/wiki/Formal methods,
J. Bowen. (Note: this Web portal provides links to numerous formal methods and
tools.)

3


