
Alloy
(Based on [Jackson 2006])

Yih-Kuen Tsay
(with help from Yi-Wen Chang)

Dept. of Information Management
National Taiwan University

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 1 / 58

Outline

About Alloy

Logic

Language

Analysis

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 2 / 58

The Alloy Philosophy

The core of software development is the design of abstractions.

An abstraction is an idea reduced to its essential form.

You carefully design the abstractions and then develop their
embodiments in code.

To find flaws early, the abstractions should be made precise and
unambiguous using formal specification.

To be practically useful, the formal notation should be based on a
small core of simple and robust concepts.

It is even more important to adopt a fully automatic analysis that
provides immediate feedbacks.

The insist on full automation, according to the originator, was
inspired by the success of model checking.

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 3 / 58

What Is Alloy?

The Alloy approach consists of a modeling language and an
automatic analyzer.

The language, Alloy, is a structural modelling language based on
first-order logic, for expressing complex structural constraints and
behaviors.

The Alloy Analyzer is a constraint solver that provides fully automatic
simulation and checking.

The approach is developed by the Software Design Group of Daniel
Jackson at MIT.

Jackson boasts the approach to be “lightweight formal methods”.

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 4 / 58

Contrast with OCL

Like OCL, Alloy has a pure ASCII notation and does not require
special typesetting tools.

As a modeling language, Alloy is similar to OCL, but it has a more
conventional syntax and a simpler semantics.

Unlike OCL, Alloy is designed for fully automatic analysis.

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 5 / 58

Alloy = Logic + Language + Analysis

Logic

the core that provides the fundamental concepts
first-order logic + relational calculus

Language

syntax for structuring specifications in the logic

Analysis

bounded search by constraint solving
simulation: finding instances of states or executions that satisfy a given
property
checking: finding a counterexample to a given property

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 6 / 58

Example

An address book for an email client

associates email addresses with shorter names that are more convenient
to use.
alias: a nickname that can be used in place of the person’s address
group: an entire set of correspondents

Sample models under “book/chapter2” in the Alloy Analyzer

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 7 / 58

Outline

About Alloy

Logic

Language

Analysis

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 8 / 58

Three Logics in One

Predicate calculus style
Two kinds of expression: relation names, which are used as
predicates, and tuples formed from quantified variables.

all n: Name, d, d’: Address |
n -> d in address and n -> d’ in address implies d = d’

Navigation expression style (probably the most convenient)
Expressions denote sets, which are formed by “navigating” from
quantified variables along relations.

all n: Name | lone n.address

Relational calculus style
Expressions denote relations, and there are no quantifiers at all.

no ~address.address - iden

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 9 / 58

Atoms and Relations

Atoms are Alloy’s primitive entities.

They are indivisible, immutable, and uninterpreted.

A relation is a structure that relates atoms.

It consists of a set of tuples, each tuple being a sequence of one or
more atoms.
All relations are first-order, i.e., relations cannot contain relations.

Every value in the Alloy logic is a relation.

Relations, sets, and scalars all are the same thing.
A scalar is represented by a singleton set.

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 10 / 58

Everything Is a Relation

Sets are unary relations
Name = {(N0), (N1), (N2)}
Addr = {(A0), (A1), (A2)}
Book = {(B0), (B1)}

Scalars are singleton sets (unary relation with only one tuple)
myName = {(N0)}
yourName = {(N2)}
myBook = {(B0)}

Binary relation
name = {(B0, N0), (B1, N0), (B2, N2)}

Ternary relation
addrs = {(B0, N0, A0), (B0, N1, A1),

(B1, N1, A2), (B1, N2, A2)}

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 11 / 58

Constants

none empty set
univ universal set
iden identity

Example

Name = {(N0), (N1), (N2)}
Addr = {(A0), (A1)}

none = {}
univ = {(N0), (N1), (N2), (A0), (A1)}
iden = {(N0, N0), (N1, N1), (N2, N2), (A0, A0), (A1, A1)}

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 12 / 58

Set Operators

+ union
& intersection
- difference
in subset
= equality

Example

Name = {(N0), (N1), (N2)}
Alias = {(N1), (N2)}
Group = {(N0)}
RecentlyUsed = {(N0), (N2)}

Alias + Group = {(N0), (N1), (N2)}
Alias & RecentlyUsed = {(N2)}
Name - RecentlyUsed = {(N1)}
RecentlyUsed in Alias = false
RecentlyUsed in Name = true
Name = Group + Alias = true

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 13 / 58

Product Operator

-> arrow (product)

Example

Name = {(N0), (N1)}
Addr = {(A0), (A1)}
Book = {(B0)}

Name->Addr = {(N0, A0), (N0, A1), (N1, A0), (N1, A1)}
Book->Name->Addr =
{(B0, N0, A0), (B0, N0, A1), (B0, N1, A0), (B0, N1, A1)}

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 14 / 58

Relational Join

p.q ≡
(a, b)
(a, c)
(b, d)

.

(a, d, c)
(b, c, c)
(c, c, c)
(b, a, d)

=
(a, c, c)
(a, a, d)

x.f ≡ (c) .

(a, b)
(b, d)
(c, a)
(d, a)

= (a)

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 15 / 58

Join Operators

. dot (join)
[] box (join)

e1[e2] = e2.e1
a.b.c[d] = d.(a.b.c)

Example
Book = {(B0)}
Name = {(N0), (N1), (N2)}
Addr = {(A0), (A1), (A2)}
Host = {(H0), (H1)}

myName = {(N1)}
myAddr = {(A0)}

address = {(B0, N0, A0), (B0, N1, A0), (B0, N2, A2)}
host = {(A0, H0), (A1, H1), (A2, H1)}

Book.address = {(N0, A0), (N1, A0), (N2, A2)}
Book.address[myName] = {(A0)}
Book.address.myName = {}
host[myAddr] = {(H0)}
address.host = {(B0, N0, H0), (B0, N1, H0), (B0, N2, H1)}

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 16 / 58

Unary Operators

~ transpose
^ transitive closure
* reflexive transitive closure

(apply only to binary relations)

^r = r + r.r + r.r.r + ...
*r = iden + ^r

Example

Node = {(N0), (N1), (N2), (N3)}
first = {(N0)} next = {(N0, N1), (N1, N2), (N2, N3)}

~next = {(N1, N0), (N2, N1), (N3, N2)}
^next = {(N0, N1), (N0, N2), (N0, N3),

(N1, N2), (N1, N3), (N2, N3)}
*next = {(N0, N0), (N0, N1), (N0, N2), (N0, N3), (N1, N1),

(N1, N2), (N1, N3), (N2, N2), (N2, N3), (N3, N3)}

first.^next = {(N1), (N2), (N3)}
first.*next = Node

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 17 / 58

Restriction and Override

<: domain restriction
:> range restriction
++ override

p ++ q =
p - (domain[q] <: p) + q

Example

Name = {(N0), (N1), (N2)}
Alias = {(N0), (N1)} Addr = {(A0)}
address = {(N0, N1), (N1, N2), (N2, A0)}

address :> Addr = {(N2, A0)}
Alias <: address = {(N0, N1), (N1, N2)}
address :> Name = {(N0, N1), (N1, N2)}
address :> Alias = {(N0, N1)}

workAddress = {(N0, N1), (N1, A0)}
address ++ workAddress = {(N0, N1), (N1, A0), (N2, A0)}

m’ = m ++ (k->v) update map m with key-value pair (k, v)

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 18 / 58

Boolean Operators

not ! negation
and && conjunction
or || disjunction
implies => implication
else alternative
iff <=> bi-implication

Example

Four equivalent constraints:

F => G else H
F implies G else H
(F && G) || ((!F) && H)
(F and G) or ((not F) and H)

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 19 / 58

Quantification

all x: e | F F holds for every x in e
some x: e | F F holds for at least one x in e
no x: e | F F holds for no x in e
lone x: e | F F holds for at most one x in e
one x: e | F F holds for exactly one x in e

Example

some n: Name, a: Address | a in n.address
some name maps to some address - address book not empty

no n: Name | n in n.^address
no name can be reached by lookups from itself - address book acyclic

all n: Name | lone a: Address | a in n.address
every name maps to at most one address - address book is functional

all n: Name | no disj a, a’: Address | (a + a’) in n.address
no name maps to two or more distinct addresses - same as above

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 20 / 58

Quantified Expressions

some e e has at least one tuple
no e e has no tuples
lone e e has at most one tuple
one e e has exactly one tuple

Example

some Name
set of names is not empty

some address
address book is not empty - it has a tuple

no (address.Addr - Name)
nothing is mapped to addresses except names

all n: Name | lone n.address
every name maps to at most one address

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 21 / 58

Let Expressions and Constraints

let x = e | A
f implies e1 else e2

A can be a constraint or an expression.
if f then e1 else e2

Example

Four equivalent constraints:

all n: Name | (some n.workAddress
implies n.address = n.workAddress else n.address = n.homeAddress)

all n: Name | let w = n.workAddress, a = n.address |
(some w implies a = w else a = n.homeAddress)

all n: Name | let w = n.workAddress |
n.address = (some w implies w else n.homeAddress)

all n: Name | n.address =
(let w = n.workAddress | (some w implies w else n.homeAddress))

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 22 / 58

Comprehensions

{x1: e1, x2: e2, ..., xn: en | F}

Example

{n: Name | no n.^address & Addr}
set of names that don’t resolve to any actual addresses

{n: Name, a: Address | n -> a in ^address}
binary relation mapping names to reachable addresses

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 23 / 58

Declarations

relation-name : expression

almost the same as the meaning of a subset constraint x in e

Example

address: Name->Addr
a single address book mapping names to addresses

addr: Book->Name->Addr
a collection of address books mapping books to names to addresses

address: Name->(Name + Addr)
a multilevel address book mapping names to names and addresses

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 24 / 58

Set Multiplicities

set any number
one exactly one
lone zero or one
some one or more

x: m e
x: e <=> x: one e

Example

RecentlyUsed: set Name
RecentlyUsed is a subset of the set Name

senderAddress: Addr
senderAddress is a singleton subset of Addr

senderName: lone Name
senderName is either empty or a singleton subset of Name

receiverAddresses: some Addr
receiverAddresses is a nonempty subset of Addr

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 25 / 58

Relation Multiplicities

r: A m -> n B

r: A m -> n B <=> ((all a: A | n a.r) and (all b: B | m r.b))

r: A -> B <=> r: A set -> set B

r: A -> (B m -> n C) <=> all a: A | a.r: B m -> n C

r: (A m -> n B) -> C <=> all c: C | r.c: A m -> n B

Example

workAddress: Name -> lone Addr
each name refers to at most one work address

members: Group lone -> some Addr
address belongs to at most one group name and group contains at least one

address

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 26 / 58

Cardinality Constraints

#r number of tuples in r
0,1,... integer literal
+ plus
- minus

= equals
< less than
> greater than
=< less than or equal to
>= greater than or equal to

sum x: e | ie
sum of integer expression ie for all singletons x drawn from e

Example

all b: Bag | #b.marbles =< 3
all bags have 3 or less marbles

#Marble = sum b: Bag | #b.marbles
the sum of the marbles across all bags equals the total number of marbles

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 27 / 58

Outline

About Alloy

Logic

Language

Analysis

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 28 / 58

“I’m My Own Grandpa” in Alloy

module language/grandpa1 /* module header */
abstract sig Person { /* signature declarations */

father: lone Man,
mother: lone Woman
}
sig Man extends Person {

wife: lone Woman
}
sig Woman extends Person {

husband: lone Man
}

fact { /* constraint paragraphs */
no p: Person | p in p.^(mother + father)
wife = ~husband
}

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 29 / 58

“I’m My Own Grandpa” in Alloy (Cont’d)

assert noSelfFather { /* assertions */
no m: Man | m = m.father
}
check noSelfFather /* commands */

fun grandpas[p: Person] : set Person { /* constraint paragraphs */
p.(mother + father).father
}
pred ownGrandpa[p: Person] { /* constraint paragraphs */

p in grandpas[p]
}
run ownGrandpa for 4 Person /* commands */

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 30 / 58

“I’m My Own Grandpa” in Alloy (Cont’d)

module language/grandpa2
· · ·
fact {

no p: Person | p in p.^(mother + father) /* biology */
wife = ~husband /* terminology */
no (wife + husband) & ^(mother + father) /* social convention */
}
· · ·
fun grandpas[p: Person] : set Person {

let parent = mother + father + father.wife + mother.husband |
p.parent.parent & Man

}
pred ownGrandpa[p: Person] {

p in grandpas[p]
}
run ownGrandpa for 4 Person

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 31 / 58

Signatures

sig A {}
set of atoms A

sig A {}
sig B {}
disjoint sets A and B (no A & B)

sig A, B {}
same as above

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 32 / 58

Signatures (Cont’d)

sig B extends A {}
set B is a subset of A (B in A)

sig B extends A {}
sig C extends A {}
B and C are disjoint subsets of A (B in A && C in A && no B & C)

sig B, C extends A {}
same as above

abstract sig A {}
sig B extends A {}
sig C extends A {}
A is partitioned by disjoint subsets B and C (no B & C && A = (B + C))

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 33 / 58

Signatures (Cont’d)

sig B in A {}
B is a subset of A - not necessarily disjoint from any other set

sig C in A + B {}
C is a subset of the union of A and B

one sig A {}
lone sig B {}
some sig C {}
A is a singleton set
B is a singleton or empty
C is a non-empty set

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 34 / 58

Field Declarations

sig A {f: e}
f is a binary relation with domain A and range given by expression e
f is constrained to be a function: (f: A -> one e) or (all a: A | a.f: one e)

sig A { f1: one e1, f2: lone e2, f3: some e3, f4: set e4 }
(all a: A | a.fn : m e)

sig A {f, g: e}
two fields with same constraints

sig A {f: e1 m -> n e2}
(f: A -> (e1 m -> n e2)) or (all a: A | a.f : e1 m -> n e2)

sig Book {
names: set Name,
addrs: names -> Addr
}
dependent fields (all b: Book | b.addrs: b.names -> Addr)

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 35 / 58

Fields in the “Self-Grandpas” Example

abstract sig Person {
father: lone Man,
mother: lone Woman
}
sig Man extends Person {

wife: lone Woman
}
sig Woman extends Person {

husband: lone Man
}

Fathers are men and everyone has at most one.

Mothers are women and everyone has at most one.

Wives are women and every man has at most one.

Husbands are men and every woman has at most one.

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 36 / 58

Facts

fact { F }
fact f { F }
sig S { ... }{ F }

Facts introduce constraints that are assumed to always hold.

Example

sig Host {}
sig Link {from, to: Host}

fact {all x: Link | x.from != x.to}
no links from a host to itself

fact noSelfLinks {all x: Link | x.from != x.to}
same as above

sig Link {from, to: Host} {from != to}
same as above, with implicit ‘this.’

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 37 / 58

Facts in “Self-Grandpas”

fact {
no p: Person |

p in p.^(mother + father)
wife = ~husband
}

No person is his or her own ancestor.

A man’s wife has that man as a husband.

A woman’s husband has that woman as a wife.

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 38 / 58

Functions

fun f[x1: e1, ..., xn: en] : e { E }
Functions are named expressions with declaration parameters and a
declaration expression as a result invoked by providing an expression
for each parameter.

Example

sig Name, Addr {}
sig Book { addr: Name -> Addr }

fun lookup[b: Book, n: Name] : set Addr {
b.addr[n]
}

fact everyNameMapped {
all b: Book, n: Name | some lookup[b, n]
}

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 39 / 58

Predicates

pred p[x1: e1, ..., xn: en] { F }
Predicates are named formulae with declaration parameters.

Example

sig Name, Addr {}
sig Book { addr: Name -> Addr }

pred contains[b: Book, n: Name, d: Addr] {
n->d in b.addr
}

fact everyNameMapped {
all b: Book, n: Name |

some d: Addr | contains[b, n, a]
}

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 40 / 58

Functions and Predicates in “Self-Grandpas”

fun grandpas[p: Person] : set Person {
p.(mother + father).father
}

pred ownGrandpa[p: Person] {
p in grandpas[p]
}

A person’s grandpas are the fathers of one’s own mother and father.

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 41 / 58

“Receiver” Syntax

fun f[x: X, y: Y, ...] : Z {...x...}
fun X.f[y:Y, ...] : Z {...this...}

pred p[x: X, y: Y, ...] {...x...}
pred X.p[y:Y, ...] {...this...}

Whether or not the predicate or function is declared in this way, it can
be used in the form

x.p[y, ...]
where x is taken as the first argument, y as the second, and so on.

Example

fun Person.grandpas : set Person {
this.(mother + father).father
}

pred Person.ownGrandpa {
this in this.grandpas
}

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 42 / 58

Assertions

assert a { F }
An assertion is a constraint intended to follow from facts of the
model.

Example

sig Node {children: set Node}
one sig Root extends Node {}

fact { Node in Root.*children }

assert someParent { // invalid assertion
all n: Node | some children.n
}

assert someParent { // valid assertion
all n: Node - Root | some children.n
}

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 43 / 58

Check Commands
assert a { F }
check a scope

instructs the analyzer to search for a counterexample to assertion
within the scope

if the model has facts M, finds a solution to M&&!F

Example

check a
top-level sigs bound by 3

check a for default
top-level sigs bound by default

check a for default but list
default overridden by bounds in list

check a for list
sigs bound in list, invalid if any unbound

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 44 / 58

Check Commands (Cont’d)

Example

abstract sig Person {}
sig Man extends Person {}
sig Woman extends Person {}
sig Grandpa extends Man {}

check a
check a for 4
check a for 4 but 3 Man, 5 Woman
check a for 4 Person
check a for 3 Man, 4 Woman
check a for 3 Man, 4 Woman, 2 Grandpa

// invalid, because top-level bounds unclear
check a for 3 Man
check a for 5 Woman, 2 Grandpa

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 45 / 58

Assertion Checks in “Self-Grandpas”

fact {
no p: Person | p in p.^(mother + father)
wife = ~husband
}

assert noSelfFather {
no m: Man | m = m.father
}

check noSelfFather

The check command instructs the analyzer to search for a
counterexample to noSelfFather within a scope of at most 3 Persons.

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 46 / 58

Run Commands

pred p[x: X, y: Y, ...] { F }
run p scope

instructs the analyzer to search for an instance of the predicate within
scope

if the model has facts M, finds a solution to
M && (some x : X , y : Y , ... | F)

fun f[x: X, y: Y, ...] : R { E }
run f scope

instructs the analyzer to search for an instance of the function within
scope

if the model has facts M, finds a solution to
M && (some x : X , y : Y , ..., result : R | result = E)

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 47 / 58

Predicate Simulation in “Self-Grandpas”

fun grandpas[p: Person] : set Person {
p.(mother + father).father
}

pred ownGrandpa[p: Person] {
p in grandpas[p]
}

run ownGrandpa for 4 Person

The run command instructs the analyzer to search for a configuration
with at most 4 people in which a man is his own grandfather.

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 48 / 58

Types and Type Checking

Alloy’s type system has two functions.

It allows the analyzer to catch errors before any serious analysis is
performed.
It is used to resolve overloading.

A basic type is introduced for each top-level signature and for each
extension signature.

A signature that is declared independently of any other is a top-level
signature.

When signature A1 extends signature A, the type associated with A1
is a subtype of the type associated with A.

A subset signature acquired its parent’s type.

If declared as a subset of a union of signatures, its type is the union of
the types of its parents.

Two basic types are said to overlap if one is a subtype of the other.

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 49 / 58

Types and Type Checking (Cont’d)

Every expression has a relational type, consisting of a union of
products:

A1->B1->... + A2->B2->... + ...

where each of the Ai , Bi , and so on, is a basic type.

A binary relation’s type, for example, will look like this:

A1->B1 + A2->B2 + ...

and a set’s type like this:

A1 + A2 + ...

The type of an expression is itself just an Alloy expression.

Types are inferred automatically so that the value of the type always
contains the values of the expressions. It’s an overapproximation.

If two types have an empty intersection, the expressions they were
obtained from must also have an empty intersection.

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 50 / 58

Types and Type Checking (Cont’d)

There are two kinds of type error.

It is illegal to form expressions that would give relations of mixed arity.
An expression is illegal if it can be shown, from the declarations alone,
to be redundant, or to contain a redundant subexpression.

The subtype hierarchy is used primarily to determine whether types
are disjoint.

The typing of an expression of the form s.r where s is a set and r is a
relation only requires s and the domain of r to overlap.

The case that two types are disjoint is rejected, because it always
results in the empty set.

Type checking is sound.

When checking an intersection expression, for example, if the resulting
type is empty, the relation represented by the expression must be empty.

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 51 / 58

Types and Type Checking (Cont’d)

A signature defines a local namespace for its declarations, so you can
use the same field name in different signatures.

When a field name refers to possibly multiple fields, the types of the
candidate fields are used to determine which field is meant.

If more than one field is possible, an error is reported.

Example

sig Object, Block {}
sig Directory extends Object {contents: set Object}
sig File extends Object {contents: set Block}

all f: File | some f.contents
// The occurrence of the field name contents is trivially resolved.

all o: Object | some o.contents
// The occurrence of contents here is not resolved, and the constraint is rejected.

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 52 / 58

Outline

About Alloy

Logic

Language

Analysis

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 53 / 58

The Alloy Analyzer

The Alloy Analyzer is a ‘model finder’.

Given a logical formula, it attempts to find a model that makes the
formula true.

A model is a binding of the variables to values.

For simulation, the formula will be some part of the system
description.

If it is a state invariant INV, models of INV will be states that satisfy
the invariant.
If it is an operation OP, with variables representing the before and after
states, models of OP will be legal state transitions.

For checking, the formula is a negation, usually of an implication.

To check that the system described by the property SYS has a property
PROP, you would assert (SYS implies PROP).
The Alloy Analyzer negates the assertion, and looks for a model of
(SYS and not PROP), which, if found, will be a counterexample to the
claim.

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 54 / 58

The Small Scope Hypothesis

Simulation is for determining consistency (i.e., satisfiability) and
checking is for determining validity and these problems are
undecidable for Alloy specifications.

The Alloy Analyzer restricts the simulation and checking operations
to a finite scope.

The validity and consistency problems within a finite scope are
decidable problems.

Most bugs have a small counterexample.

If an assertion is invalid, it probably has a small counterexample.

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 55 / 58

How Does It Work

The Alloy Analyzer is essentially a compiler.

It translates the problem to be analyzed into a (usually huge) boolean
formula.

Think about a particular value of a binary relation r from a set A to a
set B:

The value can be represented as an adjacency matrix of 0’s and 1’s,
with a 1 in row i and column j when the ith element of A is mapped to
the jth element of B.
So the space of all possible values of r can be represented by a matrix
of boolean variables.
The dimensions of these matrices are determined by the scope; if the
scope bounds A by 3 and B by 4, r will be a 3× 4 matrix containing
12 boolean variables, and having 212 possible values.

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 56 / 58

How Does It Work (Cont’d)

Now, for each relational expression, a matrix is created whose
elements are boolean expressions.

For example, the expression corresponding to p + q for binary relations
p and q would have the expression pi,j ∨ qi,j in row i and column j .

For each relational formula, a boolean formula is created.

For example, the formula corresponding to p in q would be the
conjunction of pi,j ⇒ qi,j over all values of i and j .

The resulting formula is handed to a SAT solver, and the solution is
translated back by the Alloy Analyzer into the language of the model.

All problems are solved within a user-specified scope that bounds the
size of the domains, and thus makes the problem finite (and reducable
to a boolean formula).

Alloy analyzer implements an efficient translation in the sense that the
problem instance presented to the SAT solver is as small as possible.

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 57 / 58

Differences from Model Checkers

The Alloy Analyzer is designed for analyzing state machines with
operations over complex states.

Model checkers are designed for analyzing state machines that are
composed of several state machines running in parallel, each with
relatively simple states.

Alloy allows structural constraints on the state to be described very
directly (with sets and relations), whereas most model checking
languages provide only relatively low-level data types (such as arrays
and records).

Model checkers do a temporal analysis that compares a state machine
to another machine or a temporal logic formula.

Yih-Kuen Tsay (IM @ NTU) SDM 2010: Alloy 58 / 58

	About Alloy
	Logic
	Language
	Analysis

