
1

Behavioral Patterns
Jim Yu

IBM
China Development Lab

Greater China Group

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

 Implement program behaviors in an 
object-oriented and flexible way

 Assign responsibility among classes or 
objects

 Encapsulate program behaviors that might 
change
 e.g. algorithms, state-dependent behaviors, 

object communications, object traversal
 Reduce coupling in the program
 decouple request sender and receiver

2

Why Behavioral Patterns

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

3

Iterator
Provide a way to access the elements of an aggregate object 
sequentially without exposing its underlying representation.

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

 Show your belongings
 Iterate over the items in you have and 

display them
 Save the progress

 Iterate over the player's object graph and 
save them 

 First attempt:
 Traverse the linked list via each node's next 

pointer
 Depth-first traverse the player's object 

graph

4

Challenge

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

 Problem: we often want to iterate over a 
collection of objects. How can we do this 
in a flexible way?

 Think: what's the effort if you replace your 
LinkedList with an ArrayList? Or even a 
BinarySearchTree? Can you provide 
multiple traversal methods?

 Target: given an aggregate (collection) 
class, we want to traverse its elements 
without knowing how it's implemented. 

5

Iterator

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

6

Structure

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

 Class Iterator defines an interface for 
accessing and traversing elements

 Class ConcreteIterator implements the 
Iterator interface; keeps track of the 
current position of traversal

 Class Aggregate defines an interface for 
creating an Iterator object

 Class ConcreteAggregate implements the 
Iterator creation interface to return an 
instance of the proper ConcreteIterator

7

Participants

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

 Use the Iterator pattern
 to access the elements of an aggregate 

object
 to support multiple traversals of aggregate 

objects
 forwards, backwards, depth-first, etc.

 to provide a uniform interface for traversing 
different Aggregate structures
 linked lists, array, tree, graph, etc.

8

Applicability

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

9

Sample Structure

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

 List and Iterator:
 class List and Iterator

 Concrete List and Iterator
 class ArrayList and ListIterator

 Using Iterator
 Method PrintUsers.testPrintUsers()
 Reverse Iterator: method 

ReverseIterate.testReverseIterator()

10

Samples

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

 It supports variations in the traversal of an 
aggregate: replace the iterator and the 
traversal algorithm is changed

 Iterators simplify the Aggregate interface: 
Iterator methods are not implemented in 
each concrete Aggregate (you may also 
reuse concrete Iterators)

 Support for more than one traversal of the 
Aggregate: just add Iterator factory 
methods

11

Consequences

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

 Composite: use iterator to traverse the 
composite object structure

 Factory Method: creates the concrete 
iterator

12

Related Patterns

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

13

Chain of Responsibility
Avoid coupling the sender of a request to its receiver by giving more than one object 
a chance to handle the request. Chain the receiving objects and pass the request 
along the chain until an object handles it.

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

14

Challenge

 You are implementing the user input 
handler of the GUI widgets
 The widgets have parent-children 

relationships
 If the object can be selected, then the 

object takes the focus and performs the 
action

 If the object cannot be selected, then try to 
select the object's parent

 First attempt: code it using if ... then ...

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

15

 Problem: how can you handle a request in 
a flexible way if multiple objects may take 
responsibility?

 Think: what is the effort if the widgets are 
composed differently? What if some 
widgets are added?

 Target: decouple the request sender and 
handler by chaining the possible handlers 
and passing the request along the chain 
until handled.

Chain of Responsibility

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

16

Structure

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

17

Structure

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

18

 Class Handler defines an interface for 
handling requests

 Class ConcreteHandler handles requests 
or forwards the request that it cannot 
handle to its successor

 Class Client initiates the requests to a 
ConcreteHandler object

Participants

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

19

 Use Chain of Responsibility when
 more than one object may handle a request, 

and the handler is not known a priori.
 you want to issue a request to one of several 

objects without specifying the receiver 
explicitly

 the set of objects that can handle a request 
should be specified dynamically.
 by modifying the chain

Applicability

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

20

Sample Structure

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

21

 Handler: class Widget
 defines the request handling interface
 holds the reference to its successor (parent 

in this case)
 ConcreteHandlers: class TextField, 

Window, Button
 handle or forward the request

 Client

Samples

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

22

 It reduces coupling. The pattern frees the 
client from knowing which handler will 
handle the request.

 It adds flexibility in assigning 
responsibilities to objects. Just modify 
the chain at run-time.

 The receipt is not guaranteed. The 
request can fall of the end of the chain 
without ever being handled.

Consequences

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

23

 Composite: parent node acts as the 
successor

Related Patterns

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

24

Model-View-Controller 
(MVC)

Model

View Controller

set statequery state
change notification

 domain logic or data model

 user interface
 communicates with model
 handles UI events

event notification

modifies view

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

25

Observer
Define a one-to-many dependency between objects so that 
when one object changes state, all its dependents are notified 
and updated automatically.

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

26

 The user interface should listen to events 
and react to some events
 Some player sends a message to you
 You are ambushed by monsters

 First attempt: poll each events in a big 
event loop
 Polling wastes CPU cycles when there is no 

events
 Spaghetti code of the event loop

Challenge

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

27

 Problem: we want to listen to events that 
we are interested in. How can we do this 
in a flexible way?

 Think: what is the effort if you want to 
add event types or listeners? Is your 
implementation extensible and efficient?

 Target: define a relationship between 
objects so that one (observer) can be 
notified if another (subject) updates.

Observer

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

28

Structure

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

29

Interaction

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

30

 Class Subject knows its observers and 
provides an interface for attaching and 
detaching Observer objects
 A.K.A Publisher, who generates events and 

sends notifications
 Class Observer defines an updating 

interface
 A.K.A. Subscriber, who is interested in the 

events

Participants

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

31

 Class ConcreteSubject stores state and 
sends notifications to observers

 Class ConcreteObserver maintains a 
reference to a ConcreteSubject object; 
stores states; implements the Observer 
updating interface

Participants (Cont'd)

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

32

 Use the Observer pattern when
 an abstraction has two aspects, one 

(observer) dependent on the other (subject).
 a change to one object (subject) requires 

changing others (observers), and you don’t 
know how many objects need to be changed

 an object (subject) should be able to notify 
other objects (observers) without making 
assumptions about who these objects are 
(the observers' classes).

Applicability

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

33

Sample Structure

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

34

 Class Observer
 Class Subject
 Concrete Subject: Class MessageHandler, 

sends/receives messages to/from network
 Concrete Observers: 

MessageDialogController, observes the 
event

Samples

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

35

Model

View Controller

set statequery state
change notification

 domain logic or data model

 user interface
 communicates with model
 handles UI events

event notification

modifies view

MVC and Observer Pattern

Subject Observer

Observer

Subject

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

36

 Abstract coupling between Subject and 
Observer. All a subject knows is that it has 
a list of observers.

 Support for broadcast communication. 
The notification is broadcast automatically 
to all interested observers.

 Unexpected notifications. An innocuous 
operation on the subject may cause all 
registered observers to be updated.

Consequences

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

37

 Mediator: mediator may receive the 
communication from the colleagues using 
the observer pattern

Related Patterns

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

38

Mediator
Define an object that encapsulates how a set of objects 
interact. Mediator promotes loose coupling by keeping objects 
from referring to each other explicitly, and it lets you vary their 
interaction independently.

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

39

 In your user interface, different widgets 
should act in response to others
 click item button, the item list shows up
 select one friend in the list and detail 

information is displayed accordingly on 
another panel

Challenge

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

40

 First attempt:
 Each widget has references to other widgets 

and checks other widgets for updates
 Worst case: each widget knows about all 

other widgets: O(N^2) complexity of the 
relationships

Challenge (Cont'd)

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

41

 Problem: how can we handle interactions 
between a set of objects in a flexible way?

 Think: what is the effort if you decide to 
add one more widgets to the user 
interface? 

 Target: encapsulate the interaction 
between objects. Objects don't refer to 
one another and interaction can be varied 
independently.

Mediator

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

42

Structure

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

43

Structure

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

44

 Class Mediator defines an interface for 
communicating with Colleague objects
 Often acts as the Controller in the MVC 

design pattern
 Often acts as the Observer in the Observer 

pattern
 Class ConcreteMediator knows and 

maintains its colleagues and implements 
their interactions

Participants

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

45

 Class Colleague knows its Mediator and 
communicates with other colleagues via 
mediator
 Often the View components in the MVC 

pattern
 The Subjects in the Observer pattern

Participants

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

46

 Use the Mediator pattern when
 a set of colleagues communicate in a well-

defined but complex ways.
 reusing a colleague is difficult because it 

refers to and communicates with many other 
objects

 you want to customize some objects' 
behaviors and interactions without a lot of 
subclassing: encapsulate in a mediator 

Applicability

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

47

Sample Structure

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

48

 Mediator: class DialogDirector
 Colleague: class Widget
 Concrete Colleagues: ListBox, TextField, 

Button, and many other GUI components
 Concrete Mediator: MainUIController

 Implementing DialogDirector::CreateWidgets
()

 Implementing DialogDirector::update()
 Observer pattern

Samples

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

49

Model

View Controller

set statequery state
change notification

 domain logic or data model

 user interface
 communicates with model
 handles UI events

event notification

modifies view

MVC and Mediator Pattern

Colleague Mediator

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

50

 It limits subclassing. A mediator localizes 
behavior that otherwise would be 
distributed among several objects.

 It decouples colleagues. Colleagues don't 
have to know one another

 It simplifies object protocols. Many-to-
many interactions between colleges is 
replaced with one-to-many interactions 
between the mediator and its colleagues.

Consequences

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

51

 It abstracts how objects cooperate. 
Mediators separate colleagues' 
interactions from their own behaviors

 It centralizes control. Complexity of 
interaction is centralized in the mediator.

Consequences

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

52

 Facade: facade provides the interface of 
the subsystem to the outer world. It's 
one-way communication. Mediator 
facilitates two-way communications 
between colleagues.

 Observer: colleagues communicate with 
the mediator using the Observer pattern

Related Patterns

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

53

Command

Encapsulate a request as an object, thereby letting you 
parameterize clients with different requests, queue or log 
requests, and support undoable operations.

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

54

 We want to customize the behaviors of the 
reusable widgets
 Add a new user when “buy item” button is 

pushed
 We have “sell item”, “drop item” and many 

more widgets performing different actions
 Widget classes don't know anything about 

the action, but has to execute it
 perform the action when the button is pushed

 First attempt: subclassing the widgets

Challenge

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

55

 Problem: how can we define actions that 
can be invoked by other objects at later 
times

 Think: is subclassing flexible? What if you 
have many actions to perform or you are 
not allowed to subclass the invokers?

 Target: encapsulate actions as objects 
such that the actions can be passed to 
invokers, be queued and invoked later, 
and be undone

Command

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

56

Structure

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

57

Interaction

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

58

 Class Command declares an interface for 
executing an operation.

 Class ConcreteCommand defines a 
binding between a Receiver object and an 
action; implements Execute by invoking 
the corresponding operations on Receiver
 note that there hasn't to be only one receiver 

used in a command
 a receiver isn't always necessary for a 

command to execute, either

Participants

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

59

 Class Client creates a ConcreteCommand 
object and sets its receiver

 Class Invoker asks the command to carry 
out the request

 Class Receiver knows how to perform the 
operations

Participants (Cont'd)

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

60

 Use the Command pattern
 to parameterize objects (e.g. widgets) with 

an action (command) to perform.
 instead of subclassing
 to specify, queue and execute requests at 

different times.
 to support undo.
 to support macro commands (commands 

composed of other commands)

Applicability

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

61

Sample Structure

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

62

 Command: class Command
 defines the interface

 ConcreteCommand: class 
AddUserCommand
 implements execute()

 Receiver: class UserManager
 who receives the command

 Client: class Client
 creates the command
 associates the command with the receiver

Samples

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

63

 Invoker: class AddUserButton
 who triggers the execution of the command
 e.g. user pushed the button

 Composite Command: class 
MacroCommand
 the composite pattern
 is composed of other commands

Samples (Cont'd)

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

64

Model

View Controller

set statequery state
change notification

 domain logic or data model

 user interface
 communicates with model
 handles UI events

event notification

modifies view

MVC and Mediator Pattern

Invoker

Command
Receiver

Invoker

Command

Receiver

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

65

 It decouples the invoker from the receiver.
 Commands are first-class objects. They 

can be assembled into a composite 
(macro) command.

 They can be extended easily.

Consequences

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

66

 Composite: used to implement 
MacroCommands

 Memento: used to remember the state the 
command requires for undoing the 
operation

 Prototype: cloning a command before 
putting on the command history list

Related Patterns

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

67

Template Method

Define the skeleton of an algorithm in an operation, deferring 
some steps to subclasses. Template Method lets subclasses 
redefine certain steps of an algorithm without changing the 
algorithm's structure.

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

68

 Validating user account on registration
 check registered account ID
 validate address, phone number in multiple 

countries
 validate credit card

 First attempt: one concrete validator for 
each country. Each validator performs all 
validations.
 some logic are the same for all countries and 

can be shared

Challenge

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

69

 Problem: how can we do both code reuse 
and customization of one algorithm?

 Think: how much code is redundant in the 
big validation method? What is the effort 
to change the validation logic?

 Target: define the skeleton of an 
algorithm in an operation and defer some 
steps to subclasses.

Template Method

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

70

Structure

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

71

 Class AbstractClass defines abstract 
primitive operations (steps) of an 
algorithm; implements a template method 
defining the skeleton of an algorithm.

 Class ConcreteClass implements the 
primitive operations.

Participants

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

72

 The Template Method pattern should be 
used
 to implement the invariant parts of an 

algorithm once and leave it up to subclasses 
to implement the behavior that can vary.

 when common behavior among subclasses 
should be factored and localized in a 
common class to avoid code duplication.

 to control subclasses extensions. Extensions 
are permitted in implementations of 
primitive operations.

Applicability

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

73

Sample Structure

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

74

 AbstractClass: class UserValidator
 ConcreteClass:

 class TaiwauUserValidator and 
USUserValidator 

Samples

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

75

 The Hollywood principle. Don’t call us, 
we’ll call you.
 why calling from parent class?

 Template methods call the following kinds 
of operations:
 concrete operations
 concrete AbstractClass operations
 primitive operations
 factory methods
 hook operations

Consequences

Thursday, November 4, 2010



Software Development Methods, Fall 2010 Behavioral Patterns [2010/11/04] 

76

 Factory Method: often acts as the 
primitive operation that is called by a 
template method

 Strategy: template method varies part of 
the algorithm via inheritance. Strategy 
delegates the entire algorithm to another 
object.

Related Patterns

Thursday, November 4, 2010


