

# **Formal Logic**

A Pragmatic Introduction (Based on [Gallier 1986] and [Huth and Ryan 2004])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

### What It Is



- Logic concerns two concepts:
  - truth (in a specific or general context)
  - provability (of truth from assumed truth)
- Formal (symbolic) logic approaches logic by rules for manipulating symbols:
  - syntax rules: for writing statements or formulae. (There are also semantic rules determining whether a statement is true or false in a context or mathematical structure.)
  - inference rules: for obtaining true statements from other true statements.
- 😚 Two main branches of formal logic:
  - propositional logic
  - first-order logic (predicate logic/calculus)

# Why We Need It (in Software Development)



- Correctness of software hinges on a precise statement of its requirements.
- Logical formulae give the most precise kind of statements about software requirements.
- 😚 The fact that "a software program satisfies a requirement" is very much the same as "a mathematical structure satisfies a logical formula":

$$prog \models req \text{ vs. } M \models \varphi$$

😚 To prove that a software program is correct, one may utilize the kind of inferences seen in formal logic.

### **Propositions**



- A *proposition* is a statement that is either *true* or *false* such as the following:
  - Leslie is a teacher.
  - Leslie is rich.
  - 🌞 Leslie is a pop singer.
- Simplest (atomic) propositions may be combined to form compound propositions:
  - Leslie is not a teacher.
  - 🌞 *Either* Leslie is not a teacher *or* Leslie is not rich.
  - 🌞 If Leslie is a pop singer, then Leslie is rich.

### **Inferences**



- We are given the following assumptions:
  - Leslie is a teacher.
  - Either Leslie is not a teacher or Leslie is not rich.
  - 🌞 If Leslie is a pop singer, then Leslie is rich.
- We wish to conclude the following:
  - Leslie is not a pop singer.
- The above process is an example of *inference* (deduction). Is it correct?

## **Symbolic Propositions**



- Propositions are represented by *symbols*, when only their truth values are of concern.
  - P: Leslie is a teacher.
  - 🌞 Q: Leslie is rich.
  - 🌞 R: Leslie is a pop singer.
- Compound propositions can then be more succinctly written.
  - not P: Leslie is not a teacher.
  - not P or not Q: Either Leslie is not a teacher or Leslie is not rich.
  - 🌞 R implies Q: If Leslie is a pop singer, then Leslie is rich.

## **Symbolic Inferences**



- We are given the following assumptions:
  - P (Leslie is a teacher.)
  - not P or not Q (Either Leslie is not a teacher or Leslie is not rich.)
  - R implies Q (If Leslie is a pop singer, then Leslie is rich.)
- We wish to conclude the following:
  - not R (Leslie is not a pop singer.)
- Correctness of the inference may be checked by asking:
  - Is (P and (not P or not Q) and (R implies Q)) implies (not R) a tautology (valid formula)?
  - $\red{\hspace{-0.1cm}}$  Or, is  $P \wedge (\neg P \vee \neg Q) \wedge (R \rightarrow Q) \rightarrow \neg R$  valid?

### **Models**



- Models provide the context in which a logic formula is judged to be true or false.
- Models are formally represented as mathematical structures.
- 📀 A formula can be true in one model, but false in another.
- $\bullet$  A model *satisfies* a formula if the formula is true in the model (notation:  $M \models \varphi$ ).
- A formula is *satisfiable* if there is a model that satisfies the formula.
- igoplus A formula is *valid* if it is true in every model (notation:  $\models \varphi$ ).

### Semantic Entailment



- Let Γ be a set of formulae.
- A model satisfies Γ if the model satisfies every formula in Γ.
- We say that  $\Gamma$  semantically entails C if every model that satisfies  $\Gamma$  also satisfies C, written as  $\Gamma \models C$ .
  - $A, A \rightarrow B \models B$
  - $A \rightarrow B, \neg B \models \neg A$
- A main ingredient of a logic is a systematic way to draw conclusions of the above form, namely  $\Gamma \models C$ .

### **Sequents**



- We write " $A_1, A_2, \dots, A_m \vdash C$ " to mean that the truth of formula C follows from the truth of formulae  $A_1, A_2, \dots, A_m$ .
- " $A_1, A_2, \cdots, A_m \vdash C$ " is called a *sequent*.
- In the sequent,  $A_1, A_2, \dots, A_m$  collectively are called the *antecedent* (also *context*) and C the *consequent*.

Note: Many authors prefer to write a sequent as  $\Gamma \longrightarrow C$  or  $\Gamma \Longrightarrow C$ , while reserving the symbol  $\vdash$  for provability (deducibility) in the proof (deduction) system under consideration.

### Inference Rules



- Inference rules allow one to obtain true statements from other true statements.
- Below is an inference rule for conjunction.

$$\frac{\Gamma \vdash A \qquad \Gamma \vdash B}{\Gamma \vdash A \land B} (\land I)$$

In an inference rule, the upper sequents (above the horizontal line) are called the *premises* and the lower sequent is called the *conclusion*.

### **Proofs**



- A deduction tree is a tree where each node is labeled with a sequent such that, for every internal (non-leaf) node,
  - the label of the node corresponds to the conclusion and
  - \* the labels of its children correspond to the premises of an instance of an inference rule.
- A proof tree is a deduction tree, each of whose leaves is labeled with an axiom.
- The root of a deduction or proof tree is called the conclusion.
- A sequent is provable if there exists a proof tree of which it is the conclusion.

## **Natural Deduction in the Sequent Form**



$$\frac{\Gamma \vdash A \qquad \Gamma \vdash B}{\Gamma \vdash A \land B} (\land I)$$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A \land B} (\land I)$$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash B} (\land E_1)$$

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} (\lor I_1)$$

$$\frac{\Gamma \vdash B}{\Gamma \vdash A \lor B} (\lor I_2)$$

$$\frac{\Gamma \vdash A \lor B \qquad \Gamma, A \vdash C \qquad \Gamma, B \vdash C}{\Gamma \vdash C} (\lor E)$$

## Natural Deduction (cont.)



$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} (\to I) \qquad \frac{\Gamma \vdash A \to B \qquad \Gamma \vdash A}{\Gamma \vdash B} (\to E)$$

$$\frac{\Gamma, A \vdash B \land \neg B}{\Gamma \vdash \neg A} (\neg I) \qquad \frac{\Gamma \vdash A \qquad \Gamma \vdash \neg A}{\Gamma \vdash B} (\neg E)$$

$$\frac{\Gamma \vdash A}{\Gamma \vdash \neg \neg A} (\neg \neg I) \qquad \frac{\Gamma \vdash \neg \neg A}{\Gamma \vdash A} (\neg \neg E)$$

Note: these inference rules collectively are called System ND.

4日 > 4周 > 4 3 > 4 3 > 3 3

### **Soundness**



- A deduction (proof) system is sound if it produces only semantically valid results.
- More formally, a system is sound if, whenever Γ ⊢ C is provable in the system, then Γ ⊨ C.
- Soundness allows us to draw semantically valid conclusions from purely syntactical inferences.

### **Predicates**



- A predicate is a "parameterized" statement that, when supplied with actual arguments, is either true or false such as the following:
  - Leslie is a teacher.
  - Chris is a teacher.
  - Leslie is a pop singer.
  - Chris is a pop singer.
- Like propositions, simplest (atomic) predicates may be combined to form compound predicates.

#### **Inferences**



- We are given the following assumptions:
  - For any person, either the person is not a teacher or the person is not rich.
  - \* For any person, if the person is a pop singer, then the person is rich.
- We wish to conclude the following:
  - \* For any person, if the person is a teacher, then the person is not a pop singer.

17 / 22

## **Symbolic Predicates**



- Like propositions, predicates are represented by symbols.
  - p(x): x is a teacher.
  - precess q(x): x is rich.
- Compound predicates can be expressed:
  - For all x,  $r(x) \rightarrow q(x)$ : For any person, if the person is a pop singer, then the person is rich.
  - \* For all y,  $p(y) \rightarrow \neg r(y)$ : For any person, if the person is a teacher, then the person is not a pop singer.

## **Symbolic Inferences**



- We are given the following assumptions:
  - $\circledast$  For all  $x, \neg p(x) \lor \neg q(x)$ .
  - $ilde{*}$  For all  $x, r(x) \rightarrow q(x)$ .
- We wish to conclude the following:
  - $ilde{*}$  For all  $x, p(x) o \neg r(x)$ .
- To check the correctness of the inference above, we ask:
  - \* is ((for all  $x, \neg p(x) \lor \neg q(x)$ )  $\land$  (for all  $x, r(x) \to q(x)$ ))  $\to$  (for all  $x, p(x) \to \neg r(x)$ ) valid?
  - or, is  $\forall x (\neg p(x) \lor \neg q(x)) \land \forall x (r(x) \to q(x)) \to \forall x (p(x) \to \neg r(x))$  valid?

## **Theory**



- Assume a fixed first-order language.
- $\bigcirc$  A set S of sentences is closed under provability if

$$S = \{A \mid A \text{ is a sentence and } S \vdash A \text{ is provable}\}.$$

- A set of sentences is called a theory if it is closed under provability.
- A theory is typically represented by a smaller set of sentences, called its *axioms*.

Note: a sentence is a formula without free variables. For example,  $\forall x (x \ge 0)$  is a sentence, but  $x \ge 0$  is not.

## **Group as a First-Order Theory**



- The set of non-logical symbols is  $\{\cdot, e\}$ , where  $\cdot$  is a binary function (operation) and e is a constant (the identity).
- Axioms:

$$\forall a, b, c(a \cdot (b \cdot c) = (a \cdot b) \cdot c)$$

$$\forall a(a \cdot e = e \cdot a = a)$$

$$\forall a(\exists b(a \cdot b = b \cdot a = e))$$

$$\forall a(\exists b(a \cdot b = b \cdot a = e))$$

- $(Z, \{+, 0\})$  is a model of the theory.
- So is  $(Q \setminus \{0\}, \{\times, 1\})$ .
- Additional axiom for Abelian groups:

(Commutativity)

(Associativity)

(Identity)

(Inverse)

21 / 22

### **Theorems**



- A theorem is just a statement (sentence) in a theory (a set of sentences).
- For example, the following are theorems in Group theory:
  - $ilde{*} \ orall a orall b orall c((a \cdot b = a \cdot c) o b = c).$
  - \*  $\forall a \forall b \forall c (((a \cdot b = e) \land (b \cdot a = e) \land (a \cdot c = e) \land (c \cdot a = e)) \rightarrow b = c)$ , which says that every element has a unique inverse.