

Formal Logic: Propositional Logic (Based on [Gallier 1986], [Goubault-Larrecq and Mackie 1997], and [Huth and Ryan 2004])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Yih-Kuen Tsay (IM.NTU)

Formal Logic: Propositional Logic

SDM 2010 1 / 28

Introduction

- 📀 Logic concerns two concepts:
 - truth (in a specific or general context)
 - provability (of truth from assumed truth)
- Formal (symbolic) logic approaches logic by rules for manipulating symbols:
 - syntax rules: for writing statements or formulae.
 (There are also semantic rules determining whether a statement is true or false in a context or mathematical structure.)
 - inference rules: for obtaining true statements from other true statements.
- We shall introduce two main branches of formal logic:
 - 🌻 propositional logic
 - first-order logic (predicate logic/calculus)
- The following slides cover propositional logic.

Yih-Kuen Tsay (IM.NTU)

Formal Logic: Propositional Logic

SDM 2010 2 / 28

イロト イポト イヨト イヨト 二日

Propositions

A proposition is a statement that is either true or false such as the following:

- Leslie is a teacher.
- Leslie is rich.
- 🌻 Leslie is a pop singer.
- Simplest (atomic) propositions may be combined to form compound propositions:
 - Leslie is not a teacher.
 - *Either* Leslie is not a teacher *or* Leslie is not rich.
 - If Leslie is a pop singer, then Leslie is rich.

Yih-Kuen Tsay (IM.NTU)

Formal Logic: Propositional Logic

SDM 2010 3 / 28

- 4 同 6 4 日 6 4 日 6

Inferences

We are given the following assumptions:

- 🏓 Leslie is a teacher.
- Either Leslie is not a teacher or Leslie is not rich.
- If Leslie is a pop singer, then Leslie is rich.
- We wish to conclude the following:
 - 🏓 Leslie is not a pop singer.
- The above process is an example of *inference* (deduction). Is it correct?

- 4 同 ト 4 ヨ ト 4 ヨ

Symbolic Propositions

Propositions are represented by symbols, when only their truth values are of concern.

- P: Leslie is a teacher.
- 🟓 📿: Leslie is rich.
- *R*: Leslie is a pop singer.

Sompound propositions can then be more succinctly written.

- not P: Leslie is not a teacher.
- not P or not Q: Either Leslie is not a teacher or Leslie is not rich.
- * *R implies Q*: If Leslie is a pop singer, then Leslie is rich.

Yih-Kuen Tsay (IM.NTU)

SDM 2010 5 / 28

- 4 同 6 4 日 6 4 日 6

Symbolic Inferences

• We are given the following assumptions:

- P (Leslie is a teacher.)
- not P or not Q (Either Leslie is not a teacher or Leslie is not rich.)
- \circledast *R* implies *Q* (If Leslie is a pop singer, then Leslie is rich.)
- We wish to conclude the following:
 - *not R* (Leslie is not a pop singer.)

Correctness of the inference may be checked by asking:

- Is (P and (not P or not Q) and (R implies Q)) implies (not R) a tautology (valid formula)?
- Or, is (A and (not A or not B) and (C implies B)) implies (not C) a tautology (valid formula)?

Yih-Kuen Tsay (IM.NTU)

SDM 2010 6 / 28

Propositional Logic: Syntax

Vocabulary:

- A countable set \mathcal{P} of *proposition symbols* (variables): P, Q, R, \dots (also called *atomic propositions*);
- Logical connectives (operators): ¬, ∧, ∨, →, and ↔ and sometimes the constant ⊥ (false);
- Auxiliary symbols: "(", ")".

😚 Propositional Formulae:

- Note: Any A ∈ P is a formula (and so is ⊥).
- If A and B are formulae, then so are $\neg A$, $(A \land B)$, $(A \lor B)$, $(A \lor B)$, $(A \to B)$, and $(A \leftrightarrow B)$.

Yih-Kuen Tsay (IM.NTU)

SDM 2010 7 / 28

Propositional Logic: Semantics

The meanings of positional formulae may be conveniently summarized by the truth table:

A	В	$\neg A$	$A \wedge B$	$A \lor B$	$A \rightarrow B$	$A \leftrightarrow B$
T	T	F	Т	Т	Т	Т
T	F	F	F	Т	F	F
F	T	Т	F	Т	Т	F
F	F	Т	F	F	Т	Т

The meaning of \perp is always *F* (false).

There is an implicit inductive definition in the table. We shall try to make this precise.

Truth Assignment and Valuation

- The semantics of propositional logic assigns a truth function to each propositional formula.
- Solution Let BOOL be the set of truth values $\{T, F\}$.
- A truth assignment (valuation) is a function from P (the set of proposition symbols) to BOOL.
- S Let *PROPS* be the set of all propositional formulae.
- A truth assignment v may be extended to a valuation function v from PROPS to BOOL as follows:

Truth Assignment and Valuation (cont.)

$$\hat{v}(\perp) = F$$

 $\hat{v}(P) = v(P)$ for all $P \in \mathcal{P}$

 $\hat{v}(P)$ = as defined by the table below, otherwise

$\hat{v}(A)$	$\hat{v}(B)$	$\hat{v}(\neg A)$	$\hat{v}(A \wedge B)$	$\hat{v}(A \lor B)$	$\hat{v}(A \rightarrow B)$	$\hat{v}(A \leftrightarrow B)$
T	Т	F	Т	Т	Т	Т
	F	F	F	Т	F	F
F	Т	T	F	Т	Т	F
F	F	T	F	F	Т	Т

Yih-Kuen Tsay (IM.NTU)

Formal Logic: Propositional Logic

SDM 2010 10 / 28

Truth Assignment and Satisfaction

- We say $v \models A$ (v satisfies A) if $\hat{v}(A) = T$.
- So, the symbol |= denotes a binary relation, called satisfaction, between truth assignments and propositional formulae.
- $v \not\models A (v \text{ falsifies } A) \text{ if } \hat{v}(A) = F.$

Formal Logic: Propositional Logic

Satisfaction

Alternatively, the satisfaction relation |= may be defined directly as follows:
v |= 1

$$v \models P \qquad \iff v(P) = T, \text{ for all } P \in \mathcal{P}$$

$$v \models \neg A \qquad \iff v \not\models A \text{ (it is not the case that } v \models A)$$

$$v \models A \land B \qquad \iff v \models A \text{ and } v \models B$$

$$v \models A \lor B \qquad \iff v \not\models A \text{ or } v \models B$$

$$v \models A \rightarrow B \qquad \iff v \not\models A \text{ or } v \models B$$

$$v \models A \rightarrow B \qquad \iff v \not\models A \text{ or } v \models B$$

$$v \models A \rightarrow B \qquad \iff (v \models A \text{ and } v \models B)$$

$$or (v \not\models A \text{ and } v \not\models B)$$

Yih-Kuen Tsay (IM.NTU)

Formal Logic: Propositional Logic

SDM 2010 12 / 28

- The language that we study is referred to as the object language.
- The language that we use to study the object language is referred to as the *meta* language.
- For example, not, and, and or that we used to define the satisfaction relation ⊨ are part of the meta language.

(日) (周) (三) (三)

Satisfiability

• A proposition A is *satisfiable* if there exists an assignment v such that $v \models A$.

$$\stackrel{\hspace{0.1em} \bullet}{=} v(P) = F, v(Q) = T \models (P \lor Q) \land (\neg P \lor \neg Q)$$

- A proposition is *unsatisfiable* if no assignment satisfies it. $(\neg P \lor Q) \land (\neg P \lor \neg Q) \land P$ is unsatisfiable.
- The problem of determining whether a given proposition is satisfiable is called the *satisfiability problem*.

イロト イポト イヨト イヨト 二日

Tautology and Validity

A proposition A is a *tautology* if every assignment satisfies A, written as \= A.

$$\models A \lor \neg A$$

$$\stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{=} (A \land B) \to (A \lor B)$$

- The problem of determining whether a given proposition is a tautology is called the *tautology problem*.
- A proposition is also said to be *valid* if it is a tautology.
- So, the problem of determining whether a given proposition is valid (a tautology) is also called the *validity problem*.

Note: The notion of a tautology is restricted to propositional logic. In first-order logic, we also speak of valid formulae.

Validity vs. Satisfiability

Theorem

A proposition A is valid (a tautology) if and only if $\neg A$ is unsatisfiable.

So, there are two ways of proving that a proposition A is a tautology:

- A is satisfied by every truth assignment (or A cannot be falsified by any truth assignment).
- 📀 ¬A is unsatisfiable.

(日) (周) (三) (三)

Semantic Entailment

- $\ref{eq: Second States}$ Consider two sets of propositions Γ and Δ .
- We say that v ⊨ Γ (v satisfies Γ) if v ⊨ B for every B ∈ Γ; analogously for Δ.
- We say that Δ is a semantic consequence of Γ if every assignment that satisfies Γ also satisfies Δ, written as Γ ⊨ Δ.

Solution \mathbb{S} We also say that Γ *semantically entails* Δ when $\Gamma \models \Delta$.

Yih-Kuen Tsay (IM.NTU)

Formal Logic: Propositional Logic

SDM 2010 17 / 28

Relating the Logical Connectives

Lemma

$$\models (A \leftrightarrow B) \leftrightarrow ((A \rightarrow B) \land (B \rightarrow A))$$
$$\models (A \rightarrow B) \leftrightarrow (\neg A \lor B)$$
$$\models (A \lor B) \leftrightarrow \neg (\neg A \land \neg B)$$
$$\models \bot \leftrightarrow (A \land \neg A)$$

Note: These equivalences imply that some connectives could be dispensed with. We normally want a smaller set of connectives when analyzing properties of the logic and a larger set when actually using the logic.

Yih-Kuen Tsay (IM.NTU)

Formal Logic: Propositional Logic

SDM 2010 18 / 28

Normal Forms

- A *literal* is an atomic proposition or its negation.
- A propositional formula is in Conjunctive Normal Form (CNF) if it is a conjunction of disjunctions of literals.

A propositional formula is in Disjunctive Normal Form (DNF) if it is a disjunction of conjunctions of literals.

$$otin (P \land Q \land \neg R) \lor (\neg P \land \neg Q) \lor P$$

$$\stackrel{\scriptstyle \flat}{=} (\neg P \land \neg Q \land R) \lor (P \land Q \land \neg R) \lor (\neg P \land Q \land R)$$

- A propositional formula is in Negation Normal Form (NNF) if negations occur only in literals.
 - CNF or DNF is also NNF (but not vice versa).
 - [●] $(P \land \neg Q) \land (P \lor (Q \land \neg R))$ in NNF, but not CNF or DNF.

Yih-Kuen Tsay (IM.NTU)

SDM 2010 19 / 28

イロト イポト イヨト イヨト 二日

Sequents

- A (propositional) *sequent* is an expression of the form $\Gamma \vdash \Delta$, where $\Gamma = A_1, A_2, \dots, A_m$ and $\Delta = B_1, B_2, \dots, B_n$ are finite (possibly empty) sequences of (propositional) formulae.
- In a sequent Γ ⊢ Δ, Γ is called the antecedent (also context) and Δ the consequent.
- Note: Many authors prefer to write a sequent as $\Gamma \longrightarrow \Delta$ or $\Gamma \Longrightarrow \Delta$, while reserving the symbol \vdash for provability (deducibility) in the proof (deduction) system under consideration.

Sequents (cont.)

• A sequent $A_1, A_2, \dots, A_m \vdash B_1, B_2, \dots, B_n$ is falsifiable if there exists a valuation v such that $\mathbf{v} \models (A_1 \land A_2 \land \cdots \land A_m) \land (\neg B_1 \land \neg B_2 \land \cdots \land \neg B_n).$ \circledast $A \lor B \vdash B$ is falsifiable. as $v(A) = T, v(B) = F \models (A \lor B) \land \neg B.$ • A sequent $A_1, A_2, \cdots, A_m \vdash B_1, B_2, \cdots, B_n$ is valid if, for every valuation v, $v \models A_1 \land A_2 \land \cdots \land A_m \to B_1 \lor B_2 \lor \cdots \lor B_n$. $\overset{\bullet}{=}$ $A \vdash A, B$ is valid. \circledast A, B \vdash A \land B is valid. 😚 A sequent is valid if and only if it is not falsifiable. In the following, we will use only sequents of this simpler form: $A_1, A_2, \cdots, A_m \vdash C$, where C is a formula.

Yih-Kuen Tsay (IM.NTU)

Formal Logic: Propositional Logic

SDM 2010 21 / 28

- Inference rules allow one to obtain true statements from other true statements.
- Below is an inference rule for conjunction.

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} (\land I)$$

In an inference rule, the upper sequents (above the horizontal line) are called the *premises* and the lower sequent is called the *conclusion*.

4 D N 4 B N 4 B N 4

Proofs

A deduction tree is a tree where each node is labeled with a sequent such that, for every internal (non-leaf) node,

the label of the node corresponds to the conclusion and

the labels of its children correspond to the premises

of an instance of an inference rule.

- A proof tree is a deduction tree, each of whose leaves is labeled with an axiom.
- The root of a deduction or proof tree is called the conclusion.
- A sequent is provable if there exists a proof tree of which it is the conclusion.

Natural Deduction in the Sequent Form

$$\frac{\overline{\Gamma, A \vdash A}}{\Gamma, A \vdash A} (Ax)$$

$$\frac{\overline{\Gamma \vdash A} \quad \overline{\Gamma \vdash B}}{\Gamma \vdash A \land B} (\land I) \qquad \frac{\overline{\Gamma \vdash A \land B}}{\Gamma \vdash A} (\land E_{1})$$

$$\frac{\overline{\Gamma \vdash A \land B}}{\Gamma \vdash B} (\land I_{1})$$

$$\frac{\overline{\Gamma \vdash A}}{\Gamma \vdash A \lor B} (\lor I_{1})$$

$$\frac{\Gamma \vdash A \lor B}{\Gamma \vdash B} (\lor I_{2}) \qquad \frac{\Gamma \vdash A \lor B \quad \Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma \vdash C} (\lor E)$$

Yih-Kuen Tsay (IM.NTU)

Formal Logic: Propositional Logic

▶ < ≣ ▶ ≣ ∽ < @ SDM 2010 24 / 28

<ロ> (日) (日) (日) (日) (日)

Natural Deduction (cont.)

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} (\to I) \qquad \frac{\Gamma \vdash A \to B \quad \Gamma \vdash A}{\Gamma \vdash B} (\to E)$$
$$\frac{\Gamma, A \vdash B \land \neg B}{\Gamma \vdash \neg A} (\neg I) \qquad \frac{\Gamma \vdash A \quad \Gamma \vdash \neg A}{\Gamma \vdash B} (\neg E)$$

 $\frac{\Gamma \vdash A}{\Gamma \vdash \neg \neg A} (\neg \neg I) \qquad \frac{\Gamma \vdash \neg \neg A}{\Gamma \vdash A} (\neg \neg E)$

These inference rules collectively are called System *ND* (the propositional part).

Yih-Kuen Tsay (IM.NTU)

Formal Logic: Propositional Logic

SDM 2010 25 / 28

Soundness and Completeness

Theorem

System ND is sound, i.e., if a sequent $\Gamma \vdash C$ is provable in ND, then $\Gamma \vdash C$ is valid.

Theorem

System ND is complete, i.e., if a sequent $\Gamma \vdash C$ is valid, then $\Gamma \vdash C$ is provable in ND.

Yih-Kuen Tsay (IM.NTU)

Formal Logic: Propositional Logic

SDM 2010 26 / 28

(日) (周) (三) (三)

Compactness

A set Γ of propositions is satisfiable if some valuation satisfies every proposition in Γ . For example, $\{A \lor B, \neg B\}$ is satisfiable.

Theorem

For any (possibly infinite) set Γ of propositions, if every finite non-empty subset of Γ is satisfiable then Γ is satisfiable.

Proof hint: by contradiction and the completeness of ND.

Yih-Kuen Tsay (IM.NTU)

Formal Logic: Propositional Logic

SDM 2010 27 / 28

Consistency

- A set Γ of propositions is *consistent* if there exists some proposition B such that the sequent Γ ⊢ B is not provable.
- **•** Otherwise, Γ is *inconsistent*; e.g., $\{A, \neg(A \lor B)\}$ is inconsistent.

Lemma

For System ND, a set Γ of propositions is inconsistent if and only if there is some proposition A such that both $\Gamma \vdash A$ and $\Gamma \vdash \neg A$ are provable.

Theorem

For System ND, a set Γ of propositions is satisfiable if and only if Γ is consistent.

Yih-Kuen Tsay (IM.NTU)

Formal Logic: Propositional Logic

SDM 2010 28 / 28