
Automata-Based Model Checking
(Based on [Clarke et al. 1999] and [Holzmann 2003])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 1 / 31

Outline

Büchi and Generalized Büchi Automata

Model Checking Using Automata

Basic Algorithms
Intersection
Emptiness Test

Basic Practical Details
Parallel Compositions
On-the-Fly State Exploration
Fairness

Concluding Remarks

References

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 2 / 31

Büchi Automata

The simplest computation model for finite behaviors is the
finite state automaton, which accepts finite words.

The simplest computation model for infinite behaviors is the
ω-automaton, which accepts infinite words.

Both have the same syntactic structure.

Model checking traditionally deals with non-terminating
concurrent systems.

Infinite words conveniently represent the infinite behaviors
exhibited by a non-terminating system.

Büchi automata are the simplest kind of ω-automata.

They were first proposed and studied by J.R. Büchi in the early
1960’s.

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 3 / 31

An Example Büchi Automaton

q0 q1

a

b

b

a

A Büchi automaton accepts an infinite word if the word drives
the automaton through some accepting state infinitely many
times.

The above Büchi automaton accepts infinite words over {a, b}
that have infinitely many a’s.

Using an ω-regular expression, its language is expressed as
(b∗a)ω.

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 4 / 31

Büchi Automata (cont.)

Formally, a Büchi automaton (BA), like a finite-state
automaton (FA), is given by a 5-tuple (Σ,Q,∆, q0,F):

1. Σ is a finite set of symbols (the alphabet),
2. Q is a finite set of states,
3. ∆ ⊆ Q × Σ× Q is the transition relation,
4. q0 ∈ Q is the start (or initial) state (sometimes we allow multiple

start states, indicated by Q0 or Q0), and
5. F ⊆ Q is the set of accepting (final in FA) states.

Let B = (Σ,Q,∆, q0,F) be a BA and
w = w1w2 . . .wiwi+1 . . . be an infinite string (or word) over Σ.

A run of B over w is a sequence of states
r0, r1, r2, . . . , ri , ri+1, . . . such that

1. r0 = q0 and
2. (ri ,wi+1, ri+1) ∈ ∆ for i ≥ 0.

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 5 / 31

Büchi Automata (cont.)

Let inf (ρ) denote the set of states occurring infinitely many
times in a run ρ.

A run ρ is accepting if it satisfies the following condition:

inf (ρ) ∩ F 6= ∅.

An infinite word w ∈ Σω is accepted by a BA B if there exists
an accepting run of B over w .

The language recognized by B (or the language of B), denoted
L(B), is the set of all words accepted by B .

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 6 / 31

Another Example

q0 q1

p,¬p

p

p

This Büchi automaton has {p,¬p} as its alphabet.

It accepts infinite words/sequences over {p,¬p} that
eventually remain p forever.

Its language corresponds to the set of sequences that satisfy
the temporal formula 32p.

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 7 / 31

Closure Properties

A class of languages is closed under intersection if the
intersection of any two languages in the class remains in the
class.

Analogously, for closure under complementation.

Theorem

The class of languages recognizable by Büchi automata is closed
under intersection and complementation (and hence all boolean
operations).

Note: the theorem would not hold if we were restricted to
deterministic Büchi automata, unlike in the classic case.

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 8 / 31

Generalized Büchi Automata

A generalized Büchi automaton (GBA) has an acceptance
component of the form F = {F1,F2, · · · ,Fn} ⊆ 2Q .

A run ρ of a GBA is accepting if for each Fi ∈ F ,
inf (ρ) ∩ Fi 6= ∅.
GBA’s naturally arise in the modeling of finite-state concurrent
systems with fairness constraints.

They are also a convenient intermediate representation in the
translation from a linear temporal formula to an equivalent BA.

There is a simple translation from a GBA to a Büchi
automaton, as shown next.

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 9 / 31

GBA to BA

Let B = (Σ,Q,∆, q0,F), where F = {F1, · · · ,Fn}, be a GBA.

Construct B ′ = (Σ,Q × {0, · · · , n},∆′, 〈q0, 0〉,Q × {n}).

The transition relation ∆′ is constructed such that
(〈q, x〉, a, 〈q′, y〉) ∈ ∆′ when (q, a, q′) ∈ ∆ and x and y are
defined according to the following rules:

If q′ ∈ Fi and x = i − 1, then y = i .
If x = n, then y = 0.
Otherwise, y = x .

Claim: L(B ′) = L(B).

Theorem

For every GBA B, there is an equivalent BA B ′ such that
L(B ′) = L(B).

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 10 / 31

The Model Checking Problem

Let AP be a set of atomic propositions.
A Kripke structure M over AP is a 4-tuple M = (S ,R , S0, L):

1. S is a finite set of states.
2. R ⊆ S × S is a transition relation that must be total, that is, for

every state s ∈ S there is a state s ′ ∈ S such that R(s, s ′).
3. S0 ⊆ S is the set of initial states.
4. L : S → 2AP is a function that labels each state with the set of

atomic propositions true in that state.

A computation or path of M from a state s is an infinite
sequence of states σ = s0, s1, s2, · · · such that s0 ∈ S0 and
(si , si+1) ∈ R , for all i ≥ 0.

The Model Checking problem is to determine if the
computations from the initial states of a Kripke structure M
satisfy a property ϕ expressed as a temporal formula, i.e., if
M |= ϕ.

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 11 / 31

A Mutual Exclusion Program

PMX = m : cobegin P0 ‖P1 coend m′

P0 =
l0 : while True do

NC0 : wait T = 0;
CR0 : T := 1;

od;
l ′0

P1 =
l1 : while True do

NC1 : wait T = 1;
CR1 : T := 0;

od;
l ′1

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 12 / 31

Kripke Structure of the Program PMX

T=0

bot, bot

T=1

bot, bot

T=0

l0, l1

T=1

l0, l1

T=0

NC0, l1

T=1

l0, NC1

T=0

CR0, l1

T=1

l0, CR1

T=0

l0, NC1

T=1

NC0, NC1

T=1

NC0, l1

T=0

NC0, NC1

T=1

NC0, CR1

T=0

CR0, NC1

The value of the outer program counter is not shown. Initially, the
program counters of both processes have the value bot (⊥),
indicating that they are not started yet.

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 13 / 31

Model Checking Using Automata

Finite automata can be used to model concurrent and reactive
systems as well.

One of the main advantages of using automata for model
checking is that both the modeled system and the specification
are represented in the same way.

A Kripke structure directly corresponds to a Büchi automaton,
where all the states are accepting.
A Kripke structure (S ,R , S0, L) can be transformed into an
automaton A = (Σ, S ∪ {ι},∆, ι, S ∪ {ι}) with Σ = 2AP where

(s, α, s ′) ∈ ∆ for s, s ′ ∈ S iff (s, s ′) ∈ R and α = L(s ′) and
(ι, α, s) ∈ ∆ iff s ∈ S0 and α = L(s).

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 14 / 31

Model Checking Using Automata (cont.)

The given system is modeled as a Büchi automaton A.

Suppose the desired property is originally given by a linear
temporal formula f .

Let Bf (resp. B¬f) denote a Büchi automaton equivalent to f
(resp. ¬f); we will later study how a temporal formula can be
translated into an automaton.

The model checking problem A |= f is equivalent to asking
whether

L(A) ⊆ L(Bf) or L(A) ∩ L(B¬f) = ∅.
The well-used model checker SPIN, for example, adopts this
automata-theoretic approach.
So, we are left with two basic problems:

Compute the intersection of two Büchi automata.
Test the emptiness of the resulting automaton.

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 15 / 31

Intersection of Büchi Automata

Let B1 = (Σ,Q1,∆1,Q
0
1 ,F1) and B2 = (Σ,Q2,∆2,Q

0
2 ,F2).

We can build an automaton for L(B1) ∩ L(B2) as follows.

B1 ⊗ B2 =
(Σ,Q1 × Q2 × {0, 1, 2},∆,Q0

1 × Q0
2 × {0},Q1 × Q2 × {2}).

We have (〈r , q, x〉, a, 〈r ′, q′, y〉) ∈ ∆ iff the following
conditions hold:

(r , a, r ′) ∈ ∆1 and (q, a, q′) ∈ ∆2.
The third component is affected by the accepting conditions of B1

and B2.

If x = 0 and r ′ ∈ F1, then y = 1.
If x = 1 and q′ ∈ F2, then y = 2.
If x = 2, then y = 0.
Otherwise, y = x .

The third component is responsible for guaranteeing that
accepting states from both B1 and B2 appear infinitely often.

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 16 / 31

Intersection of Büchi Automata (cont.)

A simpler intersection may be obtained when all of the states
of one of the automata are accepting.

Assuming all states of B1 are accepting and that the
acceptance set of B2 is F2, their intersection can be defined as
follows:

B1 ⊗ B2 = (Σ,Q1 × Q2,∆
′,Q0

1 × Q0
2 ,Q1 × F2)

where (〈r , q〉, a, 〈r ′, q′〉) ∈ ∆′ iff (r , a, r ′) ∈ ∆1 and
(q, a, q′) ∈ ∆2.

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 17 / 31

Checking Emptiness

Let ρ be an accepting run (if one exists) of a Büchi automaton
B = (Σ,Q,∆,Q0,F).

In the context of model checking, the accepting run ρ, if
found, represents a counterexample showing that the system
does not satisfy the property.

By definition, ρ contains infinitely many accepting states from
F .

Since Q is finite, there is some suffix ρ′ of ρ such that every
state on it appears infinitely many times.

Each state on ρ′ is reachable from any other state on ρ′.

Hence, the states in ρ′ are included in a (nontrivial) strongly
connected component.

This component is reachable from an initial state and contains
an accepting state.

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 18 / 31

Checking Emptiness (cont.)

Conversely, any strongly connected component that is
reachable from an initial state and contains an accepting state
generates an accepting run of the automaton.

Thus, checking nonemptiness of L(B) is equivalent to finding a
strongly connected component that is reachable from an initial
state and contains an accepting state.

That is, the language L(B) is nonempty iff there is a reachable
accepting state with a cycle back to itself.

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 19 / 31

Double DFS Algorithm

procedure emptiness
for all q0 ∈ Q0 do

dfs1(q0);
terminate(True);

end procedure

procedure dfs1(q)
local q′;
hash(q);
for all successors q′ of q do

if q′ not in the hash table then dfs1(q′);
if accept(q) then dfs2(q);

end procedure

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 20 / 31

Double DFS Algorithm (cont.)

procedure dfs2(q)
local q′;
flag(q);
for all successors q′ of q do

if q′ on dfs1 stack then terminate(False);
else if q′ not flagged then dfs2(q′);
end if;

end procedure

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 21 / 31

Basic Practical Details

We now have the essential automata-based theory for model
checking, but we still need to pay attention to a few more
basic practical details.

Many systems are more naturally represented as the parallel
composition of several concurrently executing processes, rather
than as a monolithic chunk of code.

There are also concerns with the size of the system and the
gap between the computation model and a concurrent system
running on real hardware.
Specifically, we will look into

asynchronous products of automata,
on-the-fly state exploration, and
fairness (in the computation model).

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 22 / 31

Processes as Automata

#define N 4
int x = N;

active proctype A0()
{

do
:: x%2 -> x = 3*x + 1
od

}

active proctype A1()
{

do
:: !(x%2) -> x = x/2
od

}

A:

s0

s1

x%2 x = 3x + 1

A′:

s ′0

s ′1

!(x%2) x = x/2

The transition labeled “x%2” is
enabled if x%2 6= 0, i.e., if x is
odd; “!(x%2)” is enabled if x is
even.

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 23 / 31

Interleaving as Asynchronous Product

A:

s0

s1

x%2 x = 3x + 1 A′:

s ′0

s ′1

!(x%2) x = x/2

A× A′:

s0, s
′
0

s1, s
′
0

s0, s
′
1

s1, s
′
1

x%2

!(x%2)

x = 3x + 1

!(x%2)

x = x/2

x%2

x = x/2

x = 3x + 1

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 24 / 31

Expanded Asynchronous Product

A0× A1:

s0, s′0

s1, s′0

s0, s′1

s1, s′1

x%2

!(x%2)

x = 3x + 1

!(x%2)

x = x/2

x%2

x = x/2

x = 3x + 1

With x = 4 initially, we have a concrete finite-state automaton:

s0, s′0
x=4

s0, s′1
x=4

s0, s′0
x=2

s0, s′1
x=2

s0, s′0
x=1

s1, s′0
x=1!(x%2) x=x/2 !(x%2) x=x/2 x%2

x = 3x + 1

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 25 / 31

Specification as a Büchi Automaton

/* N was defined to be 4 */
#define p (x < N)

never { /* <>[]p */
T0_init:

if
:: p -> goto accept_S4
:: true -> goto T0_init
fi;

accept_S4:
if
:: p -> goto accept_S4
fi;

}

B:

q0

q1

True

x < 4

x < 4

Automaton B is equiva-
lent to the “never claim”,
which specifies all the
bad behaviors.

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 26 / 31

Synchronous Product

s0, s
′
0

x=4
s0, s

′
1

x=4
s0, s

′
0

x=2
s0, s

′
1

x=2
s0, s

′
0

x=1
s1, s

′
0

x=1!(x%2) x=x/2 !(x%2) x=x/2 x%2

x = 3x + 1

⊗
q0

q1

True

x < 4

x < 4

s0, s′0
4, q0

s0, s′1
4, q0

s0, s′0
2, q0

s0, s′1
2, q0

s0, s′0
1, q0

s1, s′0
1, q0

s0, s′0
4, q1

s0, s′1
2, q1

s0, s′0
1, q1

s1, s′0
1, q1

!(x%2) x=x/2 !(x%2) x=x/2 x%2

x = 3x + 1

!(x%2) x=x/2 x%2

x=x/2 x%2

x = 3x + 1

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 27 / 31

On-the-Fly State Exploration

The automaton of the system under verification may be too
large to fit into the memory.

Using the double DFS search for a counterexample, the system
(the asynchronous product automaton) need not be expanded
fully.
All we need to do are the following:

Keep track of the current active search path.
Compute the successor states of the current state.
Remember (by hashing) states that have been visited.

This avoids construction of the entire system automaton and is
referred to as on-the-fly state exploration.

The search can stop as soon as a counterexample is found.

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 28 / 31

Fairness

A concurrent system is composed of several concurrently
executing processes.

Any process that can execute a statement should eventually
proceed with that instruction, reflecting the very basic fact
that a normal functioning processor has a positive speed.

This is the well-known notion of weak fairness, which is
practically the most important kind of fairness.
Such fairness may be enforced in one of the following two
ways:

When searching for a counterexample, make sure that every process
gets a chance to execute its next statement.
Encode the fairness constraint in the specification automaton.

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 29 / 31

Concluding Remarks

Many techniques have been developed in the past to make the
automata-based approach practical for real-world applications:

Partial order reduction
Abstraction refinement
Compositional reasoning

Most of these are still ongoing research.

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 30 / 31

References

J.R. Büchi. On a decision method in restricted second-order
arithmetic, in Proceedings of the 1960 International Congress
on Logic, Methodology and Philosophy of Science, Stanford
University Press, 1962.

E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking,
The MIT Press, 1999.

G.J. Holzmann. The SPIN Model Checker: Primer and
Reference Manual, Addison-Wesley, 2003.

W. Thomas. Automata on infinite objects, Handbook of
Theoretical Computer Science (Vol. B), 1990.

M.Y. Vardi and P. Wolper. An automata-theoretic approach to
automatic program verification, in LICS 1986.

Yih-Kuen Tsay (IM.NTU) Automata-Based Model Checking SDM 2012 31 / 31

	Büchi and Generalized Büchi Automata
	Model Checking Using Automata
	Basic Algorithms
	Intersection
	Emptiness Test

	Basic Practical Details
	Parallel Compositions
	On-the-Fly State Exploration
	Fairness

	Concluding Remarks
	References

