

Linear Temporal Logic and Büchi Automata (Based on [Manna and Pnueli 1992, 1995] and [Clarke et al. 1999])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Yih-Kuen Tsay (IM.NTU)

Linear Temporal Logic and Büchi Automata

SDM 2012 1 / 52

イロト 不得下 イヨト イヨト 二日

Outline

- Introduction
- Propositional Temporal Logic: The Future
- Simple On-the-Fly Translation
- Propositional Temporal Logic: The Past
- PTL to Automata: A Tableau Construction
- Quantified Propositional Temporal Logic (QPTL)
- Equivalences and Congruences
- Concluding Remarks
- References

Yih-Kuen Tsay (IM.NTU)

Linear Temporal Logic and Büchi Automata

SDM 2012 2 / 52

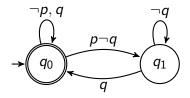
▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Introduction

- We have seen how automata, in particular Büchi automata, may be used to describe the behaviors of a concurrent system.
- Büchi automata "localize" temporal dependency between occurrences of events (represented by propositions) to relations between states and tend to be of lower level.
- We will study an alternative formalism, namely linear temporal logic.
- Temporal logic formulae describe temporal dependency without explicit references to time points and are in general more abstract.

イロト イポト イヨト イヨト 二日

Introduction (cont.)



The above Büchi automaton says that, whenever p holds at some point in time, q must hold at the same time or will hold at a later time.

Note: the alphabet is $\{pq, p\neg q, \neg pq, \neg p\neg q\}$; *q* alone represents any input symbol from $\{pq, \neg pq\}$.

- 📀 It may not be easy to see that this indeed is the case.
- In linear temporal logic, this can easily be expressed as □(p→ ◊q), which reads "always p implies eventually q".

Yih-Kuen Tsay (IM.NTU)

イロト 不得下 イヨト イヨト

PTL: The Future

- We first look at the future fragment of Propositional Temporal Logic (PTL).
- Future operators include (next), ◇ (eventually), □ (always), U (until), and W (wait-for).
- With \mathcal{W} replaced by \mathcal{R} (release), this fragment is often referred to as LTL (linear temporal logic) in the model checking community.
- 📀 Let V be a set of boolean variables.
- The future PTL formulae are defined inductively as follows:
 - Every variable $p \in V$ is a PTL formula.
 - If f and g are PTL formulae, then so are ¬f, f ∨ g, f ∧ g, ○f, ◊f, □f, f Ug, and f Wg.

 $(\neg f \lor g \text{ is also written as } f \to g \text{ and } (f \to g) \land (g \to f) \text{ as } f \leftrightarrow g.)$

• Examples: $\Box(\neg C_0 \lor \neg C_1), \ \Box(T_1 \to \Diamond C_1).$

Yih-Kuen Tsay (IM.NTU)

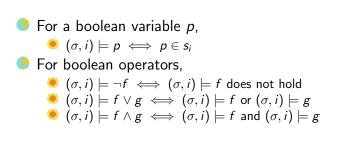
- A PTL formula is interpreted over an infinite sequence of states $\sigma = s_0 s_1 s_2 \cdots$, relative to a position in that sequence.
- A state is a subset of V, containing exactly those variables that evaluate to true in that state.
- If each possible subset of V is treated as a symbol, then a sequence of states can also be viewed as an infinite word over 2^V.
- The semantics of PTL in terms of $(\sigma, i) \models f$ (*f* holds at the *i*-th position of σ) is given below.
- We say that a sequence σ satisfies a PTL formula f or σ is a model of f, denoted $\sigma \models f$, if $(\sigma, 0) \models f$.

Yih-Kuen Tsay (IM.NTU)

Linear Temporal Logic and Büchi Automata

SDM 2012 6 / 52

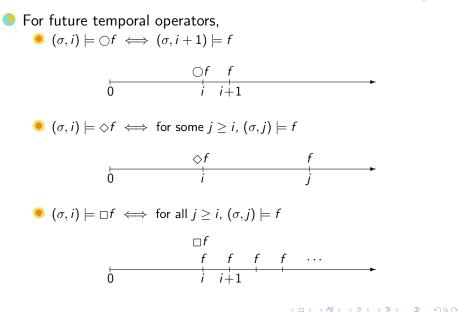
イロト 不得下 イヨト イヨト 二日



Yih-Kuen Tsay (IM.NTU)

Linear Temporal Logic and Büchi Automata

SDM 2012 7 / 52



Yih-Kuen Tsay (IM.NTU)

Linear Temporal Logic and Büchi Automata

SDM 2012 8 / 52

😚 For future temporal operators (cont.), $(\sigma, i) \models f \ \mathcal{U}g \iff$ for some $j \ge i$, $(\sigma, j) \models g$ and for all k, $i \leq k \leq i$. $(\sigma, k) \models f$ fUg $\xrightarrow{f \cdots f g} \xrightarrow{i-1 i}$ Ò \circledast $(\sigma, i) \models f \mathcal{W}g \iff$ (for some $j \ge i$, $(\sigma, j) \models g$ and for all k, $i \leq k \leq i$, $(\sigma, k) \models f$) or (for all $k \geq i$, $(\sigma, k) \models f$)

 $f \mathcal{W}g$ holds at position i if and only if $f \mathcal{U}g$ or $\Box f$ holds at position i.

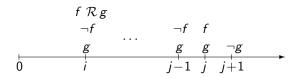
Yih-Kuen Tsay (IM.NTU)

Linear Temporal Logic and Büchi Automata

SDM 2012 9 / 52

😚 For future temporal operators (cont.),

When \mathcal{R} is preferred over \mathcal{W} , $(\sigma, i) \models f \mathcal{R}g \iff$ for all $j \ge i$, if $(\sigma, k) \not\models f$ for all $k, i \le k < j$, then $(\sigma, j) \models g$.



Yih-Kuen Tsay (IM.NTU)

Linear Temporal Logic and Büchi Automata

SDM 2012 10 / 52

イロッ イボッ イヨッ イヨッ 三日

Simple On-the-Fly Translation

イロト イポト イヨト イヨト 二日

SDM 2012

11 / 52

- We will study a tableau-based algorithm [GPVW] for obtaining a Büchi automaton from a PTL formula.
- The algorithm is geared towards being used in model checking in an on-the-fly fashion:

It is possible to detect that a property does not hold by only constructing part of the model and of the automaton.

- The algorithm can also be used to check the validity of a temporal logic assertion.
- To apply the translation algorithm, we first convert the formula φ into the *negation normal form*.

Yih-Kuen Tsay (IM.NTU)

Linear Temporal Logic and Büchi Automata

Preprocessing of Formulae

Every LTL formula can be converted into the negation normal form:

Note: " $p \mathcal{W} q$ " was not treated in the original on-the-fly translation algorithm; $\neg(p \mathcal{W} q) \cong (\neg q) \mathcal{U} (\neg p \land \neg q)$.

Yih-Kuen Tsay (IM.NTU)

Linear Temporal Logic and Büchi Automata

イロト 不得 トイヨト イヨト 二日

Data Structure of an Automaton Node

- ID: a string that identifies the node.
- Incoming: the incoming edges, represented by the IDs of the nodes with an outgoing edge leading to this node.
- New: a set of subformulae that must hold at this state and have not yet been processed.
- Old: the subformulae that must hold at this state and have already been processed.
- Next: the subformulae that must hold in all states that are immediate successors of states satisfying the formulae in Old.

The Algorithm: Start and Overview

- Start with a single node having a single incoming edge labeled init (i.e., from an initial node).
- The starting node has initially one obligation in *New*, namely φ , and *Old* and *Next* are initially empty.
- Expand the starting node (which generates new nodes) in an DFS manner.
- Fully processed nodes are put in a list called Nodes.

```
function create_graph(\varphi)
expand([ID \leftarrow new\_ID(),
Incoming \leftarrow \{init\},
Old \leftarrow \emptyset,
New \leftarrow \{\varphi\},
Next \leftarrow \emptyset],
\emptyset);
```

end function

Yih-Kuen Tsay (IM.NTU)

SDM 2012 14 / 52

- 本間 ト 本 ヨ ト - オ ヨ ト - ヨ

The Algorithm: Node-Expansion

- Check if there are unprocessed obligations in New of the current node N.
- If New is empty, it means node N is fully processed and ready to be added to Nodes.
- Otherwise, a formula in New is selected, processed, and moved to Old.

function
$$expand(q, Nodes)$$

if $New(q) = \emptyset$ then
if $\exists r \in Nodes : Old(r) = Old(q) \land Next(r) = Next(q)$ then
...
else ...
else let $\eta \in New(q)$;
 $New(q) := New(q) - \eta$;

end function

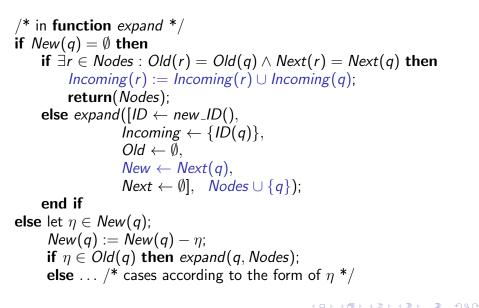
Yih-Kuen Tsay (IM.NTU)

Linear Temporal Logic and Büchi Automata

イロト 不得下 イヨト イヨト

SDM 2012

15 / 52



Yih-Kuen Tsay (IM.NTU)

SDM 2012 16 / 52

The Algorithm: Updating the Nodes List

A fully processed current node N is added to *Nodes* as follows:

- If there already is a node in Nodes with the same obligations in both its Old and Next fields, the incoming edges of N are incorporated into those of the existing node.
- Otherwise, the current node N is added to Nodes.
- With the addition of node N in Nodes, a new current node is formed for its successor as follows:
 - 1. There is initially one edge from N to the new node.
 - 2. *New* is set initially to the *Next* field of *N*.
 - 3. Old and Next of the new node are initially empty.

イロト 不得下 イヨト イヨト

A formula η in *New* is processed as follows:

• If η is just a literal (a proposition or the negation of a proposition), then

 \ref{model} if $eg \eta$ is in *Old*, the current node is discarded;

🟓 otherwise, η is added to Old.

- If η is not a literal, the current node can be split into two or not split, and new formulae can be added to the fields New and Next.
- \bigcirc The exact actions depend on the form of η .

イロト 不得下 イヨト イヨト

```
case \eta of
     p \wedge q: q' := [ID \leftarrow new_ID(),
                       Incoming \leftarrow Incoming(q),
                       Old \leftarrow Old(q) \cup \{\eta\},\
                       New \leftarrow New(q) \cup \{p, q\},
                       Next \leftarrow Next(q)];
               expand(q', Nodes):
     p \lor q: ...
     p U q: ...
     p \mathcal{R} q: \ldots
     ○p: . . .
end case
```

Yih-Kuen Tsay (IM.NTU)

SDM 2012

20 / 52

Actions on η (that is not a literal):

- $\eta = p \land q$, then both p and q are added to New.
- $\eta = p \lor q$, then the node is split, adding p to New of one copy, and q to the other.
- $\eta = p \mathcal{U} q \ (\cong q \lor (p \land \bigcirc (p \mathcal{U} q)))$, then the node is split. For the first copy, p is added to *New* and $p \mathcal{U} q$ to *Next*. For the other copy, q is added to *New*.

$$\bigcirc \eta = p \; \mathcal{R} \, q \; (\cong (p \wedge q) \lor (q \wedge \bigcirc (p \; \mathcal{R} \, q))),$$
 similar to $\mathcal U$.

• $\eta = \bigcirc p$, then p is added to Next.

Note: $p \mathcal{W} q \cong q \lor (p \land \bigcirc (p \mathcal{W} q))$

Yih-Kuen Tsay (IM.NTU)

The Algorithm: Handling \mathcal{U}

case
$$\eta$$
 of
...
 $p \ U \ q$: $q_1 := [ID \leftarrow new_ID(),$
 $Incoming \leftarrow Incoming(q),$
 $Old \leftarrow Old(q) \cup \{\eta\},$
 $New \leftarrow New(q) \cup \{p\},$
 $Next \leftarrow Next(q) \cup \{p \ U \ q\}];$
 $q_2 := [ID \leftarrow new_ID(),$
 $Incoming \leftarrow Incoming(q),$
 $Old \leftarrow Old(q) \cup \{\eta\},$
 $New \leftarrow New(q) \cup \{q\},$
 $Next \leftarrow Next(q)];$
 $expand(q_2, expand(q_1, Nodes));$

end case

Yih-Kuen Tsay (IM.NTU)

Linear Temporal Logic and Büchi Automata

SDM 2012 21 / 52

イロト イロト イヨト イヨト 三日

The Algorithm: Handling \mathcal{R}

case
$$\eta$$
 of
...
 $p \mathcal{R} q$: $q_1 := [ID \leftarrow new_ID(),$
 $Incoming \leftarrow Incoming(q),$
 $Old \leftarrow Old(q) \cup \{\eta\},$
 $New \leftarrow New(q) \cup \{q\},$
 $Next \leftarrow Next(q) \cup \{p \mathcal{R} q\}];$
 $q_2 := [ID \leftarrow new_ID(),$
 $Incoming \leftarrow Incoming(q),$
 $Old \leftarrow Old(q) \cup \{\eta\},$
 $New \leftarrow New(q) \cup \{p, q\},$
 $Next \leftarrow Next(q)];$
 $expand(q_2, expand(q_1, Nodes));$

end case

Yih-Kuen Tsay (IM.NTU)

Linear Temporal Logic and Büchi Automata

SDM 2012 22 / 52

Nodes to GBA

The list of nodes in *Nodes* can now be converted into a generalized Büchi automaton $B = (\Sigma, Q, q_0, \Delta, F)$:

- 1. Σ consists of sets of propositions from *AP*.
- 2. The set of states Q includes the nodes in *Nodes* and the additional initial state q_0 .
- 3. $(r, \alpha, r') \in \Delta$ iff $r \in Incoming(r')$ and α satisfies the conjunction of the negated and nonnegated propositions in Old(r')
- 4. q_0 is the initial state, playing the role of *init*.
- 5. *F* contains a separate set F_i of states for each subformula of the form $p \ U q$; F_i contains all the states *r* such that either $q \in Old(r)$ or $p \ U q \notin Old(r)$.

Yih-Kuen Tsay (IM.NTU)

PTL: The Past

- 😚 We now add the past fragment.
- Past operators include \odot (before), \bigcirc (previous), \Leftrightarrow (once), ⊟ (so-far), S (since), and B (back-to).
- The full PTL formulae are defined inductively as follows:
 - Svery variable $p \in V$ is a PTL formula.
 - If f and g are PTL formulae, then so are ¬f, f ∨ g, f ∧ g, ○f, ◊f, □f, f Ug, f Wg, ⊙f, ⊖f, ◊f, □f, f Sg, and f Bg.
 - $(\neg f \lor g \text{ is also written as } f \to g \text{ and } (f \to g) \land (g \to f) \text{ as } f \leftrightarrow g.)$

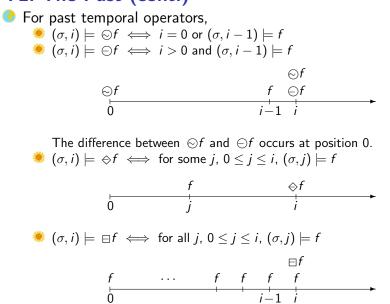
📀 Examples:

□(p→ ⇔q) says "every p is preceded by a q."
 □(⇔¬p → ⇔q) is another way of saying p W q!

Yih-Kuen Tsay (IM.NTU)

SDM 2012 24 / 52

PTL: The Past (cont.)



Yih-Kuen Tsay (IM.NTU)

Linear Temporal Logic and Büchi Automata

SDM 2012 25 / 52

イロト 不得下 イヨト イヨト 二日

PTL: The Past (cont.)

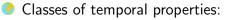
For past temporal operators (cont.), $(\sigma, i) \models f \ Sg \iff$ for some j, $0 \le j \le i$, $(\sigma, j) \models g$ and for all k, i < k < i. $(\sigma, k) \models f$ fSg $g f \cdots f$ 0 $(\sigma, i) \models f \ \mathcal{B}g \iff$ (for some $j, 0 \leq j \leq i, (\sigma, j) \models g$ and for all k, $i < k < i, (\sigma, k) \models f$ or (for all $k, 0 < k < i, (\sigma, k) \models f$) $f \mathcal{B}g$ holds at position *i* if and only if $f \mathcal{S}g$ or $\Box f$ holds at position i.

Yih-Kuen Tsay (IM.NTU)

Linear Temporal Logic and Büchi Automata

SDM 2012 26 / 52

A Hierarchy of Temporal Properties



Safety properties: □p

🏓 Guarantee properties: 🗇 p

Obligation properties: $\bigwedge_{i=1}^{n} (\Box p_i \lor \Diamond q_i)$

- 🏓 Response properties: □◇p
- Persistence properties: ◇□p
- Seactivity properties: $\bigwedge_{i=1}^n (\Box \Diamond p_i \lor \Diamond \Box q_i)$

Here p, q, p_i, q_i are arbitrary past temporal formulae.

📀 The hierarchy

 $\begin{array}{lll} \mathsf{Safety} \\ \mathsf{Guarantee} \end{array} \ \subseteq \mathsf{Obligation} \subseteq & \begin{array}{ll} \mathsf{Response} \\ \mathsf{Persistence} \end{array} \ \subseteq \mathsf{Reactivity} \end{array}$

Every temporal formula is equivalent to some reactivity formula.

Yih-Kuen Tsay (IM.NTU)

Linear Temporal Logic and Büchi Automata

SDM 2012 27 / 52

More Common Temporal Properties

- Safety properties: $\Box p$ Example: $p \mathcal{W} q$ is a safety property, as it is equivalent to $\Box(\Diamond \neg p \rightarrow \Diamond q)$.
- 📀 Response properties
 - 🧵 Canonical form: □◇p
 - Solution Variant: $\Box(p \to \Diamond q)$ (*p* leads-to *q*), which is equivalent to $\Box \Diamond (\neg p \ \mathcal{B} q)$.
- Reactivity properties: $\bigwedge_{i=1}^{n} (\Box \diamondsuit p_i \lor \diamondsuit \Box q_i)$
- 📀 (Simple) reactivity properties
 - Eanonical form: $\Box \Diamond p \lor \Diamond \Box q$
 - Variants: $\Box \Diamond p \to \Box \Diamond q$ or $\Box (\Box \Diamond p \to \Diamond q)$, which is equivalent to $\Box \Diamond q \lor \Diamond \Box \neg p$.
 - Extended form: $\Box((p \land \Box \diamondsuit r) \to \diamondsuit q)$

Yih-Kuen Tsay (IM.NTU)

SDM 2012 28 / 52

PTL to Automata: A Tableau Construction

- We next study the Tableau Construction as described in [Manna and Pnueli 1995], which handles both future and past temporal operators.
- More efficient constructions exist, but this construction is relatively easy to understand.
- A tableau is a graphical representation of all models/sequences that satisfy the given temporal logic formula.
- The construction results in essentially a GBA, but leaving propositions on the states (rather than moving them to the incoming edges of a state).
- Our presentation will be slightly different, to make the resulting GBA more apparent.

Yih-Kuen Tsay (IM.NTU)

Linear Temporal Logic and Büchi Automata

SDM 2012 29 / 52

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Expansion Formulae

The requirement that a temporal formula holds at a position j of a model can often be decomposed into requirements that

🔋 a simpler formula holds at the same position and

some other formula holds either at j + 1 or j - 1.

For this decomposition, we have the following expansion formulae:

$$\begin{array}{ll} \square p \cong p \land \bigcirc \square p & \square p \cong p \land \oslash \square p \\ \Diamond p \cong p \lor \bigcirc \Diamond p & \Diamond p \cong p \lor \oslash \Diamond p \\ p \ \mathcal{U} q \cong q \lor (p \land \bigcirc (p \ \mathcal{U} q)) & p \ \mathcal{S} q \cong q \lor (p \land \bigcirc (p \ \mathcal{S} q)) \\ p \ \mathcal{W} q \cong q \lor (p \land \bigcirc (p \ \mathcal{W} q)) & p \ \mathcal{B} q \cong q \lor (p \land \oslash (p \ \mathcal{B} q)) \end{array}$$

Note: this construction does not deal with \mathcal{R} .

Yih-Kuen Tsay (IM.NTU)

Linear Temporal Logic and Büchi Automata

SDM 2012 30 / 52

Closure

- We define the closure of a formula φ , denoted by Φ_{φ} , as the smallest set of formulae satisfying the following requirements:

 - $ilde{=}$ For every $p\in \Phi_arphi$, if q a subformula of p then $q\in \Phi_arphi.$

 - $\ \ \, \hbox{$\stackrel{\textcircled{}}{=}$} \ \ \, \hbox{For every} \ \ \, \psi \in \{\Box p, \Diamond p, p \ \ \, \mathcal{U} \ \, q, p \ \ \, \mathcal{W} \ \, q\}, \ \ \, \hbox{if} \ \ \, \psi \in \Phi_{\varphi} \ \ \, \hbox{then} \ \ \, \bigcirc \psi \in \Phi_{\varphi}.$
 - [●] For every $\psi \in \{ \Leftrightarrow p, p \ S \ q \}$, if $\psi \in \Phi_{\varphi}$ then $\bigcirc \psi \in \Phi_{\varphi}$.
 - $\hbox{$\stackrel{\textcircled{}}{=}$} \ {\sf For every} \ \psi \in \{ \, \boxminus p, p \ {\cal B} \, q \}, \ {\sf if} \ \psi \in \Phi_{\varphi} \ {\sf then} \ \odot \psi \in \Phi_{\varphi}.$
- So, the closure Φ_{φ} of a formula φ includes all formulae that are relevant to the truth of φ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

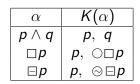
Classification of Formulae

11 (0)

- 4 @ > - 4 @ > - 4 @ >

β	$K_1(\beta)$	$K_2(\beta)$
$p \lor q$	р	q
$\Diamond p$	р	$\bigcirc p$
$\Diamond p$	р	$\ominus \diamondsuit p$
рИq	q	p, ⊖(p U q
$p \mathcal{W} q$	q	$ p, \bigcirc (p \mathcal{W} q)$
р S q	q	$ p, \ominus (p \mathcal{S} q)$
рВq	q	p, ⊝(p B q

1



An α-formula φ holds at position j iff all the K(φ)-formulae hold at j.

0

• A β -formula ψ holds at position j iff either $K_1(\psi)$ or all the $K_2(\psi)$ -formulae (or both) hold at j.

Yih-Kuen Tsay (IM.NTU)

Linear Temporal Logic and Büchi Automata

SDM 2012 32 / 52

Atoms

• We define an atom over φ to be a subset $A \subseteq \Phi_{\varphi}$ satisfying the following requirements:

 P_{sat} : the conjunction of all state formulae in A is satisfiable.

- \circledast R_{α} : for every α -formula $p \in \Phi_{\varphi}$, $p \in A$ iff $K(p) \subseteq A$.
- R_β: for every β-formula p ∈ Φ_φ, p ∈ A iff either K₁(p) ∈ A or K₂(p) ⊆ A (or both).
- For example, if atom A contains the formula ¬◊p, it must also contain the formulae ¬p and ¬○◊p.

イロト 不得下 イヨト イヨト

Mutually Satisfiable Formulae

- A set of formulae $S \subseteq \Phi_{\varphi}$ is called mutually satisfiable if there exists a model σ and a position $j \ge 0$, such that every formula $p \in S$ holds at position j of σ .
- The intended meaning of an atom is that it represents a maximal mutually satisfiable set of formulae.

Claim (atoms represent necessary conditions)

Let $S \subseteq \Phi_{\varphi}$ be a mutually satisfiable set of formulae. Then there exists a φ -atom A such that $S \subseteq A$.

It is important to realize that inclusion in an atom is only a necessary condition for mutual satisfiability (e.g., {○p ∨ ○¬p, ○p, ○¬p, p} is an atom for the formula ○p ∨ ○¬p).

Yih-Kuen Tsay (IM.NTU)

Linear Temporal Logic and Büchi Automata

SDM 2012 34 / 52

イロト 不得 トイヨト イヨト 二日

Basic Formulae

- A formula is called basic if it is either a proposition or has the form ○p, ○p, or ⊙p.
- Basic formulae are important because their presence or absence in an atom uniquely determines all other closure formulae in the same atom.
- Let Φ_{φ}^+ denote the set of formulae in Φ_{φ} that are not of the form $\neg \psi$.

Algorithm (atom construction)

- 1. Find all basic formulae $p_1, \dots, p_b \in \Phi_{\varphi}^+$.
- 2. Construct all 2^b combinations.
- 3. Complete each combination into a full atom.

Yih-Kuen Tsay (IM.NTU)

Linear Temporal Logic and Büchi Automata

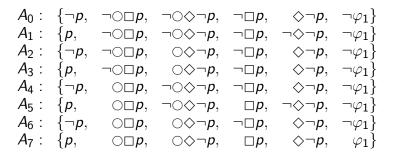
SDM 2012 35 / 52

Example

😚 Consider the formula $arphi_1: \Box p \land \Diamond \neg p$ whose basic formulae are

 $p, \ \bigcirc \Box p, \ \bigcirc \neg p.$

 $\ref{eq: started of the list of all atoms of <math>arphi_1$:



Yih-Kuen Tsay (IM.NTU)

Linear Temporal Logic and Büchi Automata

★ 重 ▶ 重 少 Q @
SDM 2012 36 / 52

イロト 不得下 イヨト イヨト

The Tableau

Given a formula φ , we construct a directed graph T_{φ} , called the tableau of φ , by the following algorithm.

Algorithm (tableau construction)

- 1. The nodes of T_{φ} are the atoms of φ .
- 2. Atom A is connected to atom B by a directed edge if all of the following are satisfied:

$$□ R_{\bigcirc} : For every \bigcirc p ∈ Φ_{\varphi}, \bigcirc p ∈ A iff p ∈ B. □ R_{⊖} : For every ⊖ p ∈ Φ_{\varphi}, p ∈ A iff ⊖ p ∈ B.$$

$$_{ { O } } : For every \odot p \in \Phi_{\varphi}, \ p \in A \ iff \ \odot p \in B.$$

An atom is called initial if it does not contain a formula of the form ⊖p or ¬⊙p (≅ ⊝¬p).

Yih-Kuen Tsay (IM.NTU)

SDM 2012 37 / 52

イロト 不得 トイヨト イヨト 二日

Example

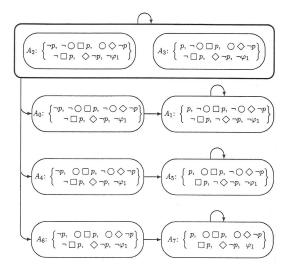


Figure : Tableau T_{φ_1} for $\varphi_1 = \Box p \land \Diamond \neg p$. Source: [Manna and Pnueli 1995].

Yih-Kuen Tsay (IM.NTU)

Linear Temporal Logic and Büchi Automata

SDM 2012 38 / 52

(日) (同) (日) (日) (日)

From the Tableau to a GBA

- Create an initial node and link it to every initial atom that contains φ .
- Label each directed edge with the atomic propositions that are contained in the ending atom.
- Add a set of atoms to the accepting set for each subformula of the following form:

Yih-Kuen Tsay (IM.NTU)

Linear Temporal Logic and Büchi Automata

SDM 2012 39 / 52

Correctness: Models vs. Paths

So For a model σ, the infinite atom path π_{σ} : A_0, A_1, \cdots in T_{φ} is said to be induced by σ if, for every position j ≥ 0 and every closure formula $p \in \Phi_{\varphi}$,

$$(\sigma, j) \models p \text{ iff } p \in A_j.$$

Claim (models induce paths)

Consider a formula φ and its tableau T_{φ} . For every model $\sigma : s_0, s_1, \cdots$, there exists an infinite atom path $\pi_{\sigma} : A_0, A_1, \cdots$ in T_{φ} induced by σ .

Furthermore, A_0 is an initial atom, and if $\sigma \models \varphi$ then $\varphi \in A_0$.

Yih-Kuen Tsay (IM.NTU)

Linear Temporal Logic and Büchi Automata

SDM 2012 40 / 52

イロト 不得下 イヨト イヨト 二日

Correctness: Promising Formulae

• A formula $\psi \in \Phi_{\varphi}$ is said to promise the formula r if ψ has one of the following forms:

$$\Diamond r, p \mathcal{U}r, \neg \Box \neg r, \neg (\neg r \mathcal{W} p).$$

or if *r* is the negation $\neg q$ and ψ has one of the forms:

$$\neg \Box q, \neg (q \mathcal{W} p).$$

Claim (promise fulfillment by models)

Let σ be a model and ψ , a formula promising r. Then, σ contains infinitely many positions $j \ge 0$ such that

$$(\sigma, j) \models \neg \psi \text{ or } (\sigma, j) \models r.$$

Yih-Kuen Tsay (IM.NTU)

SDM 2012 41 / 52

Correctness: Fulfilling Paths

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

SDM 2012

42 / 52

- Solutions A fulfills a formula ψ that promises r if $\neg \psi \in A$ or $r \in A$.
- A path $\pi: A_0, A_1, \cdots$ in the tableau T_{φ} is called fulfilling:
 - A₀ is an initial atom.
 - For every promising formula ψ ∈ Φ_φ, π contains infinitely many atoms A_j that fulfill ψ.

Claim (models induce fulfilling paths)

If $\pi_{\sigma} : A_0, A_1, \cdots$ is a path induced by a model σ , then π_{σ} is fulfilling.

Yih-Kuen Tsay (IM.NTU)

Linear Temporal Logic and Büchi Automata

Correctness: Fulfilling Paths (cont.)

Claim (fulfilling paths induce models)

If $\pi : A_0, A_1, \cdots$ is a fulfilling path in T_{φ} , there exists a model σ inducing π , i.e., $\pi = \pi_{\sigma}$ and, for every $\psi \in \Phi_{\varphi}$ and every $j \ge 0$,

 $(\sigma,j) \models \psi \text{ iff } \psi \in A_j.$

Proposition (satisfiability and fulfilling paths)

Formula φ is satisfiable iff the tableau T_{φ} contains a fulfilling path $\pi = A_0, A_1, \cdots$ such that A_0 is an initial φ -atom.

Yih-Kuen Tsay (IM.NTU)

Linear Temporal Logic and Büchi Automata

SDM 2012 43 / 52

QPTL

- Quantified Propositional Temporal Logic (QPTL) is PTL extended with quantification over boolean variables (so, every PTL formula is also a QPTL formula):
 - if f is a QPTL formula and $x \in V$, then $\forall x \colon f$ and $\exists x \colon f$ are QPTL formulae.
- Let $\sigma = s_0 s_1 \cdots$ and $\sigma' = s'_0 s'_1 \cdots$ be two sequences of states.
- We say that σ' is a x-variant of σ if, for every $i \ge 0$, s'_i differs from s_i at most in the valuation of x, i.e., the symmetric set difference of s'_i and s_i is either $\{x\}$ or empty.
- The semantics of QPTL is defined by extending that of PTL with additional semantic definitions for the quantifiers:

Yih-Kuen Tsay (IM.NTU)

SDM 2012 44 / 52

Expressiveness

Theorem

PTL is strictly less expressive than Büchi automata.

Proof.

- 1. Every PTL formula can be translated into an equivalent Büchi automaton.
- 2. "*p* holds at every even position" is recognizable by a Büchi automaton, but cannot be expressed in PTL.

Theorem

QPTL is expressively equivalent to Büchi automata.

Yih-Kuen Tsay (IM.NTU)

Linear Temporal Logic and Büchi Automata

SDM 2012 45 / 52

イロト 不得下 イヨト イヨト 二日

Equivalences and Congruences

- A formula *p* is valid, denoted $\models p$, if $\sigma \models p$ for every σ .
- Two formulae p and q are equivalent if $\models p \leftrightarrow q$, i.e., $\sigma \models p$ if and only if $\sigma \models q$ for every σ .
- Two formulae p and q are congruent, denoted $p \cong q$, if $\models \Box(p \leftrightarrow q)$.
- Congruence is a stronger relation than equivalence:
 - *p* ∨ ¬*p* and ¬⊖(*p* ∨ ¬*p*) are equivalent, as they are both true at position 0 of every model.
 - However, they are not congruent; p ∨ ¬p holds at all positions of every model, while ¬⊖(p ∨ ¬p) holds only at position 0.

Yih-Kuen Tsay (IM.NTU)

SDM 2012 46 / 52

Congruences

A minimal set of operators:

 $\neg, \lor, \bigcirc, \ \mathcal{W}, \odot, \ \mathcal{B}$

Other operators could be encoded:

$$\bigcirc p \cong \neg \odot \neg p \\ \Box p \cong p \ W \ False \qquad \Box p \cong p \ B \ False \\ \Diamond p \cong \neg \Box \neg p \qquad \Diamond p \cong \neg \Box \neg p \\ p \ U \ q \cong (p \ W \ q \land \Diamond q) \qquad p \ S \ q \cong (p \ B \ q \land \Diamond q)$$

😚 Weak vs. strong operators:

$$\begin{array}{ll} \bigcirc p \cong (\oslash p \land \ominus \mathsf{True}) & \oslash p \cong (\bigcirc p \land \odot \mathsf{False}) \\ p \ \mathcal{U} \ q \cong (p \ \mathcal{W} \ q \land \Diamond q) & p \ \mathcal{W} \ q \cong (p \ \mathcal{U} \ q \lor \Box p) \\ p \ \mathcal{S} \ q \cong (p \ \mathcal{B} \ q \land \Diamond q) & p \ \mathcal{B} \ q \cong (p \ \mathcal{S} \ q \lor \Box p) \end{array}$$

Yih-Kuen Tsay (IM.NTU)

イロト 不得下 イヨト イヨト 二日

IM

Congruences (cont.)

😚 Duality:

$$\neg \bigcirc p \cong \bigcirc \neg p \qquad \neg \bigcirc p \cong \oslash \neg p \\ \neg \oslash p \cong \bigcirc \neg p \qquad \neg \oslash p \cong \oslash \neg p \\ \neg \oslash p \cong \bigcirc \neg p \qquad \neg \oslash p \cong \oslash \neg p \\ \neg \bigcirc p \cong \oslash \neg p \qquad \neg \oslash p \cong \oslash \neg p \\ \neg \bigcirc p \cong \oslash \neg p \qquad \neg \boxdot p \cong \oslash \neg p \\ \neg (p \ U \ q) \cong (\neg q) \ W (\neg p \land \neg q) \qquad \neg (p \ S \ q) \cong (\neg q) \ B (\neg p \land \neg q) \\ \neg (p \ W \ q) \cong (\neg q) \ U (\neg p \land \neg q) \qquad \neg (p \ B \ q) \cong (\neg q) \ S (\neg p \land \neg q) \\ \neg (p \ R \ q) \cong (\neg p) \ U (\neg q) \qquad \qquad \neg \exists x \colon p \cong \exists x \colon \neg p$$

- A formula is in the *negation normal form* if negation only occurs in front of an atomic proposition.
- Every PTL/QPTL formula can be converted into an equivalent formula in the negation normal form.

Yih-Kuen Tsay (IM.NTU)

SDM 2012 48 / 52

Congruences (cont.)

Expansion formulae:

 $\begin{array}{ll} \square p \cong p \land \bigcirc \square p \\ \Diamond p \cong p \lor \bigcirc \Diamond p \\ p \ \mathcal{U} q \cong q \lor (p \land \bigcirc (p \ \mathcal{U} q)) \\ p \ \mathcal{W} q \cong q \lor (p \land \bigcirc (p \ \mathcal{W} q)) \\ p \ \mathcal{R} q \cong (q \land p) \lor (q \land \bigcirc (p \ \mathcal{R} q)) \end{array} \qquad \begin{array}{ll} \square p \cong p \land \oslash \square p \\ \Diamond p \cong p \lor \oslash \Diamond p \\ p \ \mathcal{S} q \cong p \lor \oslash \Diamond p \\ p \ \mathcal{S} q \cong q \lor (p \land \bigcirc (p \ \mathcal{S} q)) \\ p \ \mathcal{B} q \cong q \lor (p \land \oslash (p \ \mathcal{B} q)) \end{array}$

Note: we have seen that these expansion formulae are essential in translation of a temporal formula into an equivalent Büchi automaton.

イロト 不得下 イヨト イヨト

Congruences (cont.)

📀 Idempotence:

$$\begin{array}{ll} \diamond \diamond p \cong \diamond p & \Leftrightarrow \diamond \diamond p \cong \diamond p \\ \Box \Box p \cong \Box p & \Box p \cong \Box p \\ p \mathcal{U} (p \mathcal{U} q) \cong p \mathcal{U} q & p \mathcal{S} (p \mathcal{S} q) \cong p \mathcal{S} q \\ p \mathcal{W} (p \mathcal{W} q) \cong p \mathcal{W} q & p \mathcal{B} (p \mathcal{B} q) \cong p \mathcal{B} q \\ (p \mathcal{U} q) \mathcal{U} q \cong p \mathcal{U} q & (p \mathcal{S} q) \mathcal{S} q \cong p \mathcal{S} q \\ (p \mathcal{W} q) \mathcal{W} q \cong p \mathcal{W} q & (p \mathcal{B} q) \mathcal{B} q \cong p \mathcal{B} q \end{array}$$

Yih-Kuen Tsay (IM.NTU)

Linear Temporal Logic and Büchi Automata

SDM 2012 50 / 52

Concluding Remarks

- PTL can be extended in other ways to be as expressive as Büchi automata, i.e., to express all ω-regular properties.
- For example, the industry standard IEEE 1850 Property Specification Language (PSL) is based on an extension that adds classic regular expressions.
- Regarding translation of a temporal formula into an equivalent Büchi automaton, there have been quite a few algorithms proposed in the past.
- How to obtain an automaton as small as possible remains interesting, for both theoretical and practical reasons.

References

- E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking, The MIT Press, 1999.
- E.A. Emerson. Temporal and modal logic, Handbook of Theoretical Computer Science (Vol. B), MIT Press, 1990.
- G.J. Holzmann. The SPIN Model Checker: Primer and Reference Manual, Addison-Wesley, 2003.
- Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specification, Springer, 1992.
- Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety, Springer, 1995.