
1

Design Patterns
Ching-Lin Yu

Mozilla Taiwan

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Contents
 Why Design Patterns
 Creational, Structural and Behavioral

Patterns
 GoF Design Patterns
 Introductions to Enterprise Systems
 Enterprise/Cloud Computing Patterns
 Concluding Remarks

2

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Why Design Patterns
 It’s all about software complexity

 http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

 Naive changes tends to deteriorate the
software
 “Code smells”

 Duplicated code
 Long method
 Complex control structure
 Large class
 Code depending on implementation
 etc.

3

Wednesday, November 13, 2013

http://www.informationisbeautiful.net/visualizations/million-lines-of-code/
http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Why Design Patterns
 Life is hard when you continue to work on

the software
 Example

 A cloud file system client that is too intimate
to the implementation
 Concrete class names are seen throughout the

code
 Hard to maintain when a new cloud file

system needs to be supported
 Solution: abstract factory

4

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

What is a Design Pattern
 A general repeatable solution to a

commonly-occurring problem in
software design.

 With design patterns, you don't have to
reinvent the wheel

 Design patterns provide good solutions,
not functionally correct solutions

5

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

6

Software Development Methods, Fall 2008

3

What is a Design Pattern
 So you think you can write good OO

programs?
 To reuse ancient’s wisdom on software

design
More flexible code
Avoid the pitfalls

 To communicate more effectively

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

7

Software Development Methods, Fall 2008

6

Design Patterns and Object Orientation

 Design patterns show how to put good use
of OO constructs in designing software
Encapsulation
polymorphism
 Inheritance

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

8

Software Development Methods, Fall 2008

11

What to Expect from Design Patterns

 A common design vocabulary
 just like Linked Lists in data structures or

Quick Sort in algorithms
 A documentation and learning aid

 learning design patterns help you understand
designs in real systems and make better
design

 documentation using design patterns are
easier to write and understand

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

9

Software Development Methods, Fall 2008

12

What to Expect from Design Patterns

 An adjunct to existing methods
 design patterns show how to use OO

constructs effectively
 provide a smooth transition from analysis to

design and then to implementation
 A target for refactoring

 refactor to patterns

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

10

Software Development Methods, Fall 2008

4

GoF and Design Patterns
 Erich Gamma, Richard Helm, Ralph

Johnson, and John Vlissides, the so called
“Gang of four”

 As of Mar. 2012, the book was in the 40th
print since 1994

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Creational Patterns
 Creational design patterns abstract the

instantiation process.
 They help make a system independent of

how its objects are created, composed,
and represented
 They all encapsulate knowledge about which

concrete classes the system uses
 They hide how instances of these classes are

created and put together

11

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Structural Patterns
 A better way for different entities to work

together
 Focus on higher level interface

composition and integration.
 Particularly useful for making

independently developed libraries to work
together

12

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

 Implement program behaviors in an
object-oriented and flexible way

 Assign responsibility among classes or
objects

 Encapsulate program behaviors that might
change
 e.g. algorithms, state-dependent behaviors,

object communications, object traversal
 Reduce coupling in the program
 decouple request sender and receiver

13

Behavioral Patterns

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

GoF Design Patterns
 Abstract factory
 Adapter & Facade
 Iterator
 Singleton
 Template method & factory method
 Model/View/Controller
 Command & Observer & Mediator

14

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

GoF Design Patterns
 Proxy & Decorator
 State
 Chain of Responsibility
 Prototype
 Builder & Composite & Visitor

15

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Abstract Factory
 What it is

 An interface for creating families of related
or dependent objects
 Without specifying their concrete classes

 Target Problem
 Cloud drive client needs to instantiate

different FileSystem, File and Folder objects
 Without needing to know the concrete classes for

different storage providers
 Cross platform GUI programming

16

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Without the Abstract Factory Pattern

 Client has to instantiate the concrete
classes of the product family

17

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Applying the Pattern
18

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Structure
Abstract Factory
declares an interface for creating product objects

Concrete Factory
implements the interface

Client
uses only the interface defined by
AbstractFactory and AbstractProduct

Concrete Product
defines a product object

Abstract Product
declares an interface for product objects

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Participants
 Class AbstractFactory declares an

interface for creating product objects;
 Class ConcreteFactory implements the

interface;
 Class AbstractProduct declares an

interface for product objects;
 Class ConcreteProduct defines a product

object;
 Class Client uses only the interface

defined by AbstractFactory and
AbstractProduct

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Interface Change: Adapter & Facade

 They both change the interface seen by
the using class

 Adapter converts an interface
 Facade simplifies an interface

21

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Adapter
 What it is

 Conversion of the interface of one class into
another the client expects

 Target Problem
 Integrate a library into your system but the

interface is incompatible
 The interface of the library may change in

subsequent versions
 Replace existing library with another one

without impacting existing code

22

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Without the Adapter Pattern
 Client is bound to the interface of the

library

23

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Applying the Pattern
24

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Structure
25

Class Adapter

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Structure
26

Object Adapter

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Facade
 What it is

 A high level interface to a set of interfaces in
a subsystem

 Target Problem
 Providing a simplified interface to the low-

level, fine-grained subsystems
 GCC -> scanner, parser, optimizer, code gen,

linker
 Unify the access to subsystems

 e.g. account manager -> database, ldap, remote
systems

27

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Without the Facade Pattern
 Client directly uses the interface of the

lower-level, fine-grained classes

28

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Apply the Pattern
29

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Structure
30

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Iterator
 What it is

 A way to access the elements of an
aggregate objets sequentially

 Without exposing its internal details
 Target Problem

 Accessing ‘collection classes’
 List, Vector, Tree, Sets, etc.

 You don’t want your code heavily impacted
just because you want to replace a list with a
tree

31

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Without the Iterator Pattern
 Client is dependent on the interface of the

aggregate classes

32

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Applying the Pattern
33

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

34

Structure

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

 Class Iterator defines an interface for
accessing and traversing elements

 Class ConcreteIterator implements the
Iterator interface; keeps track of the
current position of traversal

 Class Aggregate defines an interface for
creating an Iterator object

 Class ConcreteAggregate implements the
Iterator creation interface to return an
instance of the proper ConcreteIterator

35

Participants

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Beyond Iterator
 Iterator provides an universal interface to

aggregate classes in an OO way
 Some programming languages solve this

problem in language level
 Java: foreach style of loop

 for (Object element: anArray) { }
 Syntactic sugar

 Ruby: code block invoked for each element
 anArray.each { |element| print element }

36

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Singleton
 What it is

 A class that creates only one instance
 The only instance is often globally accessible

 Target Problem
 Some classes only need one instance in the

system
 Multiple instances is either unnecessary or

worse, an error in the system
 Database driver, and abstract factory, connection

pool

37

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Structure

Singleton
defines a static member function that
lets clients access its unique instance

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Participants

 Class Singleton defines a static member
function that lets clients access its
unique instance.

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

40

Model-View-Controller (MVC)

Model

View Controller

set statequery state
change notification

 domain logic or data model

 user interface
 communicates with model
 handles UI events

event notification

modifies view

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Patterns Used in MVC
 Mediator: to mediate the communications

of widgets
 The controller

 Observer: to receive event notifications
 Model to View, View to Controller
 Async in nature

 Command: to encapsulate the action as
objects
 Action taken on event notifications

41

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Mediator
 What it is

 An object acting as a “hub”
 Defines how a set of objects (colleagues)

interacts
 So colleagues don’t have to refer to each

other
 Target problem

 Different widgets have to act in response to
each other

 Storing references in widgets is inflexible

42

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Without the Mediator Pattern
 Each concrete widget refers to other

widgets to interact with

43

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

44

Applying the Pattern

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

45

Structure

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

46

Structure

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

47

 Class Mediator defines an interface for
communicating with Colleague objects
 Often acts as the Controller in the MVC

design pattern
 Often acts as the Observer in the Observer

pattern
 Class ConcreteMediator knows and

maintains its colleagues and implements
their interactions

Participants

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

48

 Class Colleague knows its Mediator and
communicates with other colleagues via
mediator
 Often the View components in the MVC

pattern
 The Subjects in the Observer pattern

Participants

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

49

Model

View Controller

set statequery state
change notification

 domain logic or data model

 user interface
 communicates with model
 handles UI events

event notification

modifies view

MVC and Mediator Pattern

Colleague Mediator

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Observer
 What it is

 A one-to-many dependency between objects
 Allowing the registrant objects (observers) to

be notified
 When the something interesting to them

happens in the notifier (subject)
 Target Problem

 An object should react to some (often async)
event

 e.g. instant message dialog
 Polling is a not a good solution

50

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Without the Observer Pattern
 The observer has to continuously query

the subject
 The polling approach

While (! aSubject.hasChangedState()) {

}
// now aSubject has changed its state

51

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

52

Applying the Pattern

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

53

Structure

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

54

Interaction

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

55

 Class Subject knows its observers and
provides an interface for attaching and
detaching Observer objects
 A.K.A Publisher, who generates events and

sends notifications
 Class Observer defines an updating

interface
 A.K.A. Subscriber, who is interested in the

events

Participants

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

56

 Class ConcreteSubject stores state and
sends notifications to observers

 Class ConcreteObserver maintains a
reference to a ConcreteSubject object;
stores states; implements the Observer
updating interface

Participants

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

57

Model

View Controller

set statequery state
change notification

 domain logic or data model

 user interface
 communicates with model
 handles UI events

event notification

modifies view

MVC and Observer Pattern

Subject Observer

Observer

Subject

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Command
 What it is

 An action encapsulated as an object
 To be executed later by another client
 Can be queued or composed

 Target problem
 Customize the behavior of reusable widgets
 Subclassing is not a good solution

 You will have many derived class only to define
custom behavior

 classes for Delete Button, Delete Menu Item, Add
Button, Add Menu Item

58

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Without the Command Pattern

 A subclass for each widget instance
59

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

60

Applying the Pattern

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

61

Structure

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

62

Interaction

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

63

 Class Command declares an interface for
executing an operation.

 Class ConcreteCommand defines a
binding between a Receiver object and an
action; implements Execute by invoking
the corresponding operations on Receiver
 note that there hasn't to be only one receiver

used in a command
 a receiver isn't always necessary for a

command to execute, either

Participants

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

64

 Class Client creates a ConcreteCommand
object and sets its receiver

 Class Invoker asks the command to carry
out the request

 Class Receiver knows how to perform the
operations

Participants

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

65

Model

View Controller

set statequery state
change notification

 domain logic or data model

 user interface
 communicates with model
 handles UI events

event notification

modifies view

MVC and Command Pattern

Invoker

Command
Receiver

Invoker

Command

Receiver

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Template Method & Factory Method

 What Template Method is
 A method that serves as the ‘skeleton’ or

structure of an algorithm
 Abstract methods called by the template

method is implemented in derived classes
 Target problems

 Client profile validators for different
countries

 The generic quick sort algorithms for user-
defined classes

66

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Without the Template Method Pattern

ValidateUSUser () {
 // validate account id
 // validate name
 // validate age restriction (US)
 // validate phone number (US)
 // validate address (US)
}

67

ValidateTWUser () {
 // validate account id
 // validate name
 // validate age restriction (TW)
 // validate phone number (TW)
 // validate address (TW)
}

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

68

Applying the Pattern

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

69

Structure

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

70

 Class AbstractClass defines abstract
primitive operations (steps) of an
algorithm; implements a template method
defining the skeleton of an algorithm.

 Class ConcreteClass implements the
primitive operations.

Participants

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Factory Method
 What it is

 A method that instantiates a concrete class
when called

 Often called in template method

71

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Structure

Product
defines the interface of objects
created by factory method

Creator
declares the factory method
returning an object of type Product

ConcreteProduct
implements the Product interface

ConcreteCreator
overrides the factory method to return
an instance of a ConcreteProduct

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Transparent Access: Proxy & Decorator

 The 2 are similar in structure but for
different purposes

 Proxy focuses on controlling the access of
an object

 Decorator is used to ‘decorate’ (adding
more functionality) to an object
dynamically

73

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Proxy
 What it is

 A surrogate or placeholder for another
object to control access to it

 In a transparent way (having the same
interface as the proxied object)

 Target problem
 Access control between the client and your

system, such as
 Lazy loading of image or other resources
 Transparent access to remote objects

74

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Without the Proxy Pattern
 The condition needs to be coded in the

proxied class

// find cached authentication information
AuthInfo auth = FindCachedAuthInfo();
If (auth != NULL) {
 // already cached. Return authentication info here
}
Else {
 // perform authentication with remote server
}

75

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Applying the Pattern

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Decorator
 What it is

 Attaching additional responsibilities to an
object dynamically

 An alternative to subclassing
 Target Problem

 Enabling/disabling additional features at
runtime
 Caching, logging

 Dynamic composition of these features
(subclassing is infeasible)

77

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Without the Decorator Pattern
78

 The added functionality needs to be coded
in the decorated class:
If (decoration1Enabled) {
 // Perform decoration1 action part 1.
}
// function body
If (decoration2Enabled) {
 // Perform decoration2 action.
}
If (decoration1Enabled) {
 // Perform decoration1 action part 2.
}

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Applying the Pattern
79

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Structure
80

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

State
 What it is

 Allowing an object to change its behavior
when its internal state changes

 Target Problem
 State machines

 Network protocols (e.g. TCP state machine)
 Drawing tools
 Document editors
 Games
 Complex business rules

81

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Without the State Pattern
 Use if or switch structure to produce

lengthy functions

switch (character.getState()) {
case wandering:
 // character is wandering
 break;
case battle:
 // in battle and behaves aggressively
 break;
default:
 break;
}

82

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Applying the Pattern
83

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Structure
84

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

85

Participants

 Class Context defines the interface to
client and maintains an instance of a
ConcreteState subclass.

 Class State defines an interface for
encapsulating the behavior associated with
a particular state of the Context.

 Class ConcreteState subclasses implement
a behavior associated with a state of the
Context.

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Chain of Responsibility
 What it is

 Decouple the request sender and handler by
chaining the possible handlers and passing
the request along the chain until handled

 Target Problem
 Handling the request if multiple objects may

take responsibility, but without specifying
explicitly which one will

 Specifying the object that handles the
request dynamically

86

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Applying the Pattern
87

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

88

Structure

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

89

Structure

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

90

Participants

 Class Handler defines an interface for
handling requests

 Class ConcreteHandler handles requests
or forwards the request that it cannot
handle to its successor

 Class Client initiates the requests to a
ConcreteHandler object

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Prototype
 What it is

 An object that creates other object by
‘cloning’ itself

 Target Problem
 Some objects are expensive to instantiate

from scratch
 Cloning the already instantiated object is

cheaper
 Default user profile stored in database -- no need

to retrieve from DB each time when creating a
new user.

91

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Without the Prototype Pattern

(Suppose instantiation of ShoppingCart requires access
of remote system, which is expensive)

// anonymous user place an item to the shopping cart
aShoppingCart = new ShoppingCart () // 1000 ms
...

92

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Applying the Pattern
93

(Suppose instantiation of ShoppingCart requires access
of remote system, which is expensive)

// anonymous user place an item to the shopping cart
aShoppingCart = prototype.clone() // 10 ms
...

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

94

Structure
Client
creates a new object by
asking a prototype to clone itself

Prototype
declares an interface for cloning itself

ConcretePrototype
implements an operator for
cloning itself

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

95

Participants

 Class Prototype declares an interface for
cloning itself.

 Class ConcretePrototype implements an
operator for cloning itself.

 Class Client creates a new object by
asking a prototype to clone itself.

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Patterns Dealing with Complex
Object Hierarchies
 Composite: the representation (structure)

of the hierarchy
 Builder: to create the representation
 Visitor: to extend the operations that can

be applied to the composite structure

96

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Sample Problem
 Cross-platform GUI framework

 Widgets have hierarchical structures/
representations

 Use define the GUI interface with XML
 Support native interface (Mac, Linux,

Windows) and web interface
 Convert the representation to json for AJAX

97

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Composite
 What it is?

 A structure to compose objects into tree
structures to represent part-whole
hierarchies

 Individual objects and compositions are
treated uniformly (with the same interface)

 Target Problem
 Parse tree
 GUI widget composition
 Macro commands

98

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Apply the Composite Pattern
99

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Structure/Participants

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Composite and Builder
 The composite structure is often built with

the builder
 What Builder is?

 Separation of the construction of a complex
object from its representation

 The construction process can optionally
create different representations

 Target Problem
 Parser reading source file to represent it as

parse tree

101

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Apply the Builder Pattern
Input Config:
<Frame name=”fr1”>
 <Frame name=”fr2”>
 <Button name=”btn1”>...</Button>
 <Button name=”btn2”>...</Button>
 </Frame>
 <Button name=”btn3”>...</Button>
</Frame>

Parsed result:

102

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Apply the Builder Pattern
103

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

104

Structure

Director
constructs an object using
the Builder interface

Product
represents the final product
and
its constituent parts

Builder
specifies an interface for
creating parts of a Product object

Concrete Builder
implements the Builder interface and
keeps track of the product and objects

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

105

Builder Interaction

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

106

Participants

 Class Builder specifies an interface for
creating parts of a Product object.

 Class ConcreteBuilder implements the
Builder interface and keeps track of the
product and objects.

 Class Director constructs an object using
the Builder interface.

 Class Product represents the final
product and its constituent parts.

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Visitor and Composite
 The visitor lets you add new operations to

the composite structure without
modifying it

 What Visitor is?
 The representation of an operation that can

be applied to different elements in the
composite structure

 Target Problem
 Serialization of the parse tree into json,

database, etc

107

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Without the Visitor Pattern
 Adding new operations to the whole class

family:

108

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Applying the Pattern
 The operations to serialize to Json and

XML are extracted into visitors

109

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

110

Structure

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

111

Interaction

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

112

Participants

 Class Visitor declares a Visit operation for
each class of ConcreteElement in the
object structure.

 Class ConcreteVisitor implements each
operation declared by Visitor.

 Class Element defines an Accept operation
that takes a visitor as an argument.

Wednesday, November 13, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

113

Participants

 Class ConcreteElement implements an
Accept operation that takes a visitor as an
argument.

 Class ObjectStructure enumerates its
elements

Wednesday, November 13, 2013

