

Automata-Based Model Checking (Based on [Clarke et al. 1999] and [Holzmann 2003])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Yih-Kuen Tsay (IM.NTU)

Automata-Based Model Checking

SDM 2014 1 / 31

イロト 不得下 イヨト イヨト 二日

Outline

Büchi and Generalized Büchi Automata

Model Checking Using Automata

Basic Algorithms

Intersection Emptiness Test

Basic Practical Details

Parallel Compositions On-the-Fly State Exploration Fairness

Concluding Remarks

References

Yih-Kuen Tsay (IM.NTU)

Automata-Based Model Checking

SDM 2014 2 / 31

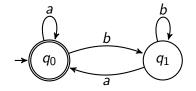
- 4 目 ト - 4 日 ト - 4 日 ト

Büchi Automata

- The simplest computation model for finite behaviors is the finite state automaton, which accepts finite words.
- The simplest computation model for infinite behaviors is the ω -automaton, which accepts infinite words.
- 😚 Both have the same syntactic structure.
- Model checking traditionally deals with non-terminating concurrent systems.
- Infinite words conveniently represent the infinite behaviors exhibited by a non-terminating system.
- I Büchi automata are the simplest kind of ω -automata.
- They were first proposed and studied by J.R. Büchi in the early 1960's.

イロト 不得下 イヨト イヨト 二日

An Example Büchi Automaton



- A Büchi automaton accepts an infinite word if the word drives the automaton through some accepting state infinitely many times.
- The above Büchi automaton accepts infinite words over {a, b} that have infinitely many a's.
- Using an ω -regular expression, its language is expressed as $(b^*a)^{\omega}$.

A (10) F (10)

Büchi Automata (cont.)

- Formally, a Büchi automaton (BA), like a finite-state automaton (FA), is given by a 5-tuple (Σ , Q, Δ , q_0 , F):
 - 1. Σ is a finite set of symbols (the *alphabet*),
 - 2. *Q* is a finite set of *states*,
 - 3. $\Delta \subseteq Q \times \Sigma \times Q$ is the *transition relation*,
 - 4. $q_0 \in Q$ is the *start* (or *initial*) state (sometimes we allow multiple start states, indicated by Q_0 or Q^0), and
 - 5. $F \subseteq Q$ is the set of *accepting* (final in FA) states.

• Let
$$B = (\Sigma, Q, \Delta, q_0, F)$$
 be a BA and
 $w = w_1 w_2 \dots w_i w_{i+1} \dots$ be an infinite string (or word) over Σ .

• A *run* of *B* over *w* is a sequence of states $r_0, r_1, r_2, \ldots, r_i, r_{i+1}, \ldots$ such that

1.
$$r_0 = q_0$$
 and

2.
$$(r_i, w_{i+1}, r_{i+1}) \in \Delta$$
 for $i \ge 0$.

Yih-Kuen Tsay (IM.NTU)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Büchi Automata (cont.)

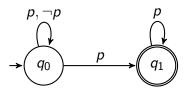
- Let $inf(\rho)$ denote the set of states occurring infinitely many times in a run ρ .
- A run ρ is *accepting* if it satisfies the following condition:

 $inf(\rho) \cap F \neq \emptyset.$

- Solution An infinite word $w \in \Sigma^{\omega}$ is *accepted* by a BA *B* if there exists an accepting run of *B* over *w*.
- The language recognized by B (or the language of B), denoted L(B), is the set of all words accepted by B.

イロト 不得 トイヨト イヨト 二日

Another Example



- Solution This Büchi automaton has $\{p, \neg p\}$ as its alphabet.
- It accepts infinite words/sequences over $\{p, \neg p\}$ that eventually remain p forever.
- Its language corresponds to the set of sequences that satisfy the temporal formula \origin p.

イロト 人間ト イヨト イヨト

Closure Properties

- A class of languages is closed under intersection if the intersection of any two languages in the class remains in the class.
- Analogously, for closure under complementation.

Theorem

The class of languages recognizable by Büchi automata is closed under **intersection** and **complementation** (and hence all boolean operations).

Note: the theorem would not hold if we were restricted to deterministic Büchi automata, unlike in the classic case.

イロト イポト イヨト イヨト 二日

Generalized Büchi Automata

- A generalized Büchi automaton (GBA) has an acceptance component of the form $F = \{F_1, F_2, \dots, F_n\} \subseteq 2^Q$.
- A run ρ of a GBA is accepting if for each $F_i \in F$, $inf(\rho) \cap F_i \neq \emptyset$.
- GBA's naturally arise in the modeling of finite-state concurrent systems with fairness constraints.
- They are also a convenient intermediate representation in the translation from a linear temporal formula to an equivalent BA.
- There is a simple translation from a GBA to a Büchi automaton, as shown next.

イロト 不得下 イヨト イヨト 二日

GBA to **BA**

Theorem

For every GBA B, there is an equivalent BA B' such that L(B') = L(B).

Yih-Kuen Tsay (IM.NTU)

Automata-Based Model Checking

SDM 2014 10 / 31

The Model Checking Problem

• Let AP be a set of atomic propositions.

• A Kripke structure M over AP is a 4-tuple $M = (S, R, S_0, L)$:

- 1. S is a finite set of states.
- 2. $R \subseteq S \times S$ is a transition relation that must be total, that is, for every state $s \in S$ there is a state $s' \in S$ such that R(s, s').
- 3. $S_0 \subseteq S$ is the set of initial states.
- 4. $L: S \rightarrow 2^{AP}$ is a function that labels each state with the set of atomic propositions true in that state.
- ♦ A computation or path of M from a state s is an infinite sequence of states $\sigma = s_0, s_1, s_2, \cdots$ such that $s_0 \in S_0$ and $(s_i, s_{i+1}) \in R$, for all $i \ge 0$.
- The Model Checking problem is to determine if the computations from the initial states of a Kripke structure M satisfy a property φ expressed as a temporal formula, i.e., if M ⊨ φ.

Yih-Kuen Tsay (IM.NTU)

SDM 2014 11 / 31

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

A Mutual Exclusion Program

 $P_{MX} = m$: cobegin $P_0 \parallel P_1$ coend m'

$$P_0 = I_0 : \text{ while } True \text{ do} \\ NC_0 : \text{ wait } T = 0; \\ CR_0 : T := 1; \\ \text{ od}; \\ I'_0$$

$$P_{1} = I_{1} : \text{ while } True \text{ do} \\ NC_{1} : \text{ wait } T = 1; \\ CR_{1} : T := 0; \\ \text{od}; \\ I'_{1}$$

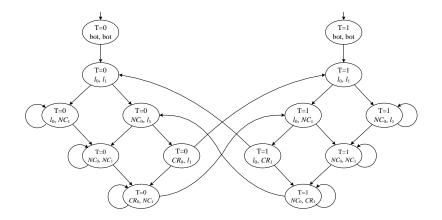
Yih-Kuen Tsay (IM.NTU)

Automata-Based Model Checking

SDM 2014 12 / 31

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Kripke Structure of the Program *P_{MX}*



The value of the outer program counter is not shown. Initially, the program counters of both processes have the value bot (\perp) , indicating that they are not started yet.

Yih-Kuen Tsay (IM.NTU)

Automata-Based Model Checking

SDM 2014 13 / 31

< ロ > < 同 > < 三 > < 三

Model Checking Using Automata

- Finite automata can be used to model concurrent and reactive systems as well.
- One of the main advantages of using automata for model checking is that both the modeled system and the specification are represented in the same way.
- A Kripke structure directly corresponds to a Büchi automaton, where all the states are accepting.
- A Kripke structure (S, R, S_0, L) can be transformed into an automaton $A = (\Sigma, S \cup \{\iota\}, \Delta, \iota, S \cup \{\iota\})$ with $\Sigma = 2^{AP}$ where

(*s*,
$$\alpha$$
, *s'*) $\in \Delta$ for *s*, *s'* $\in S$ iff (*s*, *s'*) $\in R$ and $\alpha = L(s')$ and $(\iota, \alpha, s) \in \Delta$ iff $s \in S_0$ and $\alpha = L(s)$.

Yih-Kuen Tsay (IM.NTU)

Automata-Based Model Checking

SDM 2014 14 / 31

イロト イポト イヨト イヨト 二日

Model Checking Using Automata (cont.)

- The given system is modeled as a Büchi automaton A.
- Suppose the desired property is originally given by a linear temporal formula *f*.
- Let B_f (resp. $B_{\neg f}$) denote a Büchi automaton equivalent to f (resp. $\neg f$); we will later study how a temporal formula can be translated into an automaton.
- The model checking problem $A \models f$ is equivalent to asking whether

 $L(A) \subseteq L(B_f) \text{ or } L(A) \cap L(B_{\neg f}) = \emptyset.$

- The well-used model checker SPIN, for example, adopts this automata-theoretic approach.
- 😚 So, we are left with two basic problems:
 - Compute the intersection of two Büchi automata.
 - Fest the emptiness of the resulting automaton.

Yih-Kuen Tsay (IM.NTU)

Automata-Based Model Checking

SDM 2014 15 / 31

イロト イポト イヨト イヨト 二日

Intersection of Büchi Automata

- Let $B_1 = (\Sigma, Q_1, \Delta_1, Q_1^0, F_1)$ and $B_2 = (\Sigma, Q_2, \Delta_2, Q_2^0, F_2)$.
- We can build an automaton for $L(B_1) \cap L(B_2)$ as follows.
- $B_1 \otimes B_2 = (\Sigma, Q_1 \times Q_2 \times \{0, 1, 2\}, \Delta, Q_1^0 \times Q_2^0 \times \{0\}, Q_1 \times Q_2 \times \{2\}).$
- We have $(\langle r, q, x \rangle, a, \langle r', q', y \rangle) \in \Delta$ iff the following conditions hold:
 - $\overset{ imes}{=}$ $(r,a,r')\in \Delta_1$ and $(q,a,q')\in \Delta_2.$
 - The third component is affected by the accepting conditions of B₁ and B₂.
 - $\begin{array}{l} & \textbf{if } x=0 \text{ and } r' \in F_1, \text{ then } y=1. \\ & \textbf{if } x=1 \text{ and } q' \in F_2, \text{ then } y=2. \\ & \textbf{if } x=2, \text{ then } y=0. \\ & \textbf{o} \text{ Otherwise, } y=x. \end{array}$
- The third component is responsible for guaranteeing that accepting states from both B₁ and B₂ appear infinitely often.

Yih-Kuen Tsay (IM.NTU)

SDM 2014 16 / 31

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Intersection of Büchi Automata (cont.)

- A simpler intersection may be obtained when all of the states of one of the automata are accepting.
- Assuming all states of B_1 are accepting and that the acceptance set of B_2 is F_2 , their intersection can be defined as follows:

$$B_1 \otimes B_2 = (\Sigma, Q_1 \times Q_2, \Delta', Q_1^0 \times Q_2^0, Q_1 \times F_2)$$

where $(\langle r, q \rangle, a, \langle r', q' \rangle) \in \Delta'$ iff $(r, a, r') \in \Delta_1$ and $(q, a, q') \in \Delta_2$.

Yih-Kuen Tsay (IM.NTU)

Automata-Based Model Checking

SDM 2014 17 / 31

イロト イポト イヨト イヨト 二日

Checking Emptiness

- Let ρ be an accepting run (if one exists) of a Büchi automaton $B = (\Sigma, Q, \Delta, Q^0, F)$.
- In the context of model checking, the accepting run ρ , if found, represents a *counterexample* showing that the system does not satisfy the property.
- By definition, ρ contains infinitely many accepting states from *F*.
- Since Q is finite, there is some suffix ρ' of ρ such that every state on it appears infinitely many times.
- Each state on ρ' is reachable from any other state on ρ' .
- Hence, the states in ρ' are included in a (nontrivial) strongly connected component.
- This component is reachable from an initial state and contains an accepting state.

Yih-Kuen Tsay (IM.NTU)

SDM 2014 18 / 31

イロト 不得下 イヨト イヨト 二日

Checking Emptiness (cont.)

- Conversely, any strongly connected component that is reachable from an initial state and contains an accepting state generates an accepting run of the automaton.
- Thus, checking nonemptiness of L(B) is equivalent to finding a strongly connected component that is reachable from an initial state and contains an accepting state.
- That is, the language L(B) is nonempty iff there is a reachable accepting state with a cycle back to itself.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Double DFS Algorithm


```
procedure emptiness
    for all q_0 \in Q^0 do
        dfs1(q_0);
    terminate(True);
end procedure
procedure dfs1(q)
    local q';
    hash(q);
    for all successors q' of q do
        if q' not in the hash table then dfs1(q');
```

```
if accept(q) then dfs2(q);
end procedure
```

Yih-Kuen Tsay (IM.NTU)

Automata-Based Model Checking

SDM 2014 20 / 31

イロト イポト イヨト イヨト 二日

Double DFS Algorithm (cont.)

procedure dfs2(q)
 local q';
 flag(q);
 for all successors q' of q do
 if q' on dfs1 stack then terminate(False);
 else if q' not flagged then dfs2(q');
 end if;
end procedure

イロト イポト イヨト イヨト 二日

Basic Practical Details

- We now have the essential automata-based theory for model checking, but we still need to pay attention to a few more basic practical details.
- Many systems are more naturally represented as the parallel composition of several concurrently executing processes, rather than as a monolithic chunk of code.
- There are also concerns with the size of the system and the gap between the computation model and a concurrent system running on real hardware.
- Specifically, we will look into
 - ጶ asynchronous products of automata,
 - 🏓 on-the-fly state exploration, and
 - fairness (in the computation model).

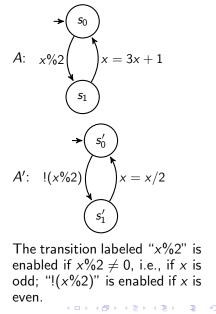
Yih-Kuen Tsay (IM.NTU)

Automata-Based Model Checking

SDM 2014 22 / 31

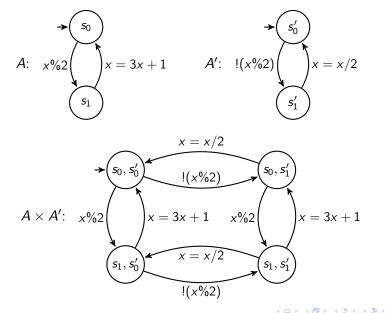
Processes as Automata

#define N 4 int x = N; active proctype AO() Ł do $:: x/2 \rightarrow x = 3*x + 1$ od active proctype A1() do $:: !(x/2) \rightarrow x = x/2$ od



Automata-Based Model Checking

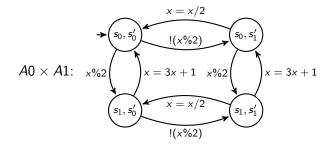
Interleaving as Asynchronous Product



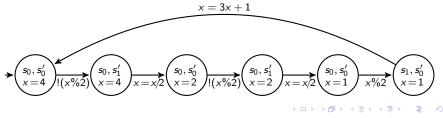
Automata-Based Model Checking

▶ ◀ 볼 ▶ 볼 ∽ ↔ SDM 2014 24 / 31

Expanded Asynchronous Product



With x = 4 initially, we have a concrete finite-state automaton:

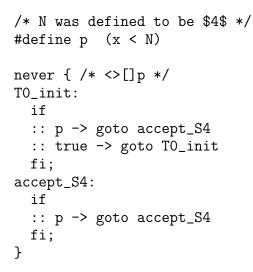


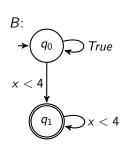
Yih-Kuen Tsay (IM.NTU)

Automata-Based Model Checking

SDM 2014 25 / 31

Specification as a Büchi Automaton



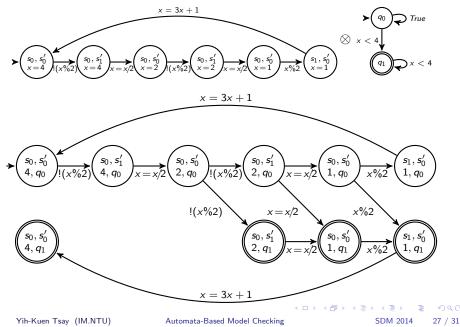


Automaton B is equivalent to the "never claim", which specifies all the bad behaviors.

イロト 不得下 イヨト イヨト 二日

SDM 2014 26 / 31

Synchronous Product



On-the-Fly State Exploration

- The automaton of the system under verification may be too large to fit into the memory.
- Using the double DFS search for a counterexample, the system (the asynchronous product automaton) need not be expanded fully.
- All we need to do are the following:
 - Keep track of the current active search path.
 - Compute the successor states of the current state.
 - Remember (by hashing) states that have been visited.
- This avoids construction of the entire system automaton and is referred to as on-the-fly state exploration.
- The search can stop as soon as a counterexample is found.

イロト 人間ト イヨト イヨト

Fairness

- A concurrent system is composed of several concurrently executing processes.
- Any process that can execute a statement should eventually proceed with that instruction, reflecting the very basic fact that a normal functioning processor has a positive speed.
- This is the well-known notion of weak fairness, which is practically the most important kind of fairness.
- Such fairness may be enforced in one of the following two ways:
 - When searching for a counterexample, make sure that every process gets a chance to execute its next statement.
 - Encode the fairness constraint in the specification automaton.

- Many techniques have been developed in the past to make the automata-based approach practical for real-world applications:
 - 🌻 Partial order reduction
 - Abstraction refinement
 - 🌻 Compositional reasoning
- Most of these are still ongoing research.

References

- J.R. Büchi. On a decision method in restricted second-order arithmetic, in *Proceedings of the 1960 International Congress* on Logic, Methodology and Philosophy of Science, Stanford University Press, 1962.
- E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking, The MIT Press, 1999.
- G.J. Holzmann. The SPIN Model Checker: Primer and Reference Manual, Addison-Wesley, 2003.
- W. Thomas. Automata on infinite objects, Handbook of Theoretical Computer Science (Vol. B), 1990.
- M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification, in LICS 1986.

Yih-Kuen Tsay (IM.NTU)

Automata-Based Model Checking

SDM 2014 31 / 31

イロト 不得下 イヨト イヨト 二日