
Software Development
Methods, Spring 2020

Jeffrey Liu
jeffffrey@gmail.com

Agenda

- Building an Agile Team

- Software Development Process

- DevOps Practices

- Engineering Culture

My journey in Software Development

- 2005~ 2007 : Enterprise Software, Developer

- 2007 ~ 2009 : IBM Emerging Technology Institute, Tech Lead

- 2009 ~ 2015 : IBM DataPower Appliance, incubation projects. Tech Lead

- 2015 ~ 2017 : Robot solution architect

- 2017 ~ 2020: Team Lead, Engineering Director at Appier

What is Agile ?

- Agile is the ability to create and respond to change. It is a way of dealing with, and
ultimately succeeding in, an uncertain and turbulent environment.

Agile Software Development

- Agile software development is an umbrella term for a set of frameworks and practices
based on the values and principles expressed in the Manifesto for Agile Software
Development

- One thing that separates Agile from other approaches to software development is the
focus on the people doing the work and how they work together. Solutions evolve
through collaboration between self-organizing cross-functional teams utilizing the
appropriate practices for their context.

https://www.agilealliance.org/agile101/the-agile-manifesto/
https://www.agilealliance.org/agile101/the-agile-manifesto/

Agile Subway Map

https://www.agilealliance.org/agile101/subwa
y-map-to-agile-practices/

https://www.agilealliance.org/agile101/subway-map-to-agile-practices/
https://www.agilealliance.org/agile101/subway-map-to-agile-practices/

What is NOT Agile ?

Agile Development Process

- The process used during software development life cycle. Each process contains a set of agile

development practices (see the agile subway chart)

- Commonly used development process:

- Scrum

- Kanban

- Scrumban

Agile Team Structure

R&R in Agile Team

- Developer

- Product Owner

- Team Lead

- QA

- Agile Coach

Scrum in Action

- Backlog Grooming
- Sprint Planning
- Daily Standby Meeting
- Sprint Review Meeting
- Sprint Retrospective Meeting
- Scrum of Scrum

How we run Scrum

Measure Scrum team performance with
burndown chart

Kanban in Action

What is Kanban ?

- A kanban board is an agile project management tool designed to help visualize
work, limit work-in-progress, and maximize efficiency (or flow).

- Kanban boards use cards, columns, and continuous improvement to help
technology and service teams commit to the right amount of work, and get it
done!

Original Toyota Kanban

What is a digital Kanban ?

Key Elements in Kanban

1. Visual Signal
2. Columns
3. Work-In-Progress Limits

When to use Kanban

- Lightweight development projects
- Tasks can be broken down into small and concrete pieces

- E.g. bugs, infra tasks
- Focus on flow and throughput

Scrumban in Action

Introducing Scrumban

6 Key Steps for running Scrumban

1. Visualize the task pipeline
2. Impose WIP Limit
3. Add more column as buffer
4. Global priority and late binding
5. Consistent task breakdown and estimate with cycletime
6. Team grooming with fixed interval

1. Visualize The Task Pipeline
Every team should keep an up-to-date kanban, so it is clear to everyone who is interested in the
overall progress

To Do In Progress Done

X

2. Impose Work In Progress Limit
- Individual Level Limit (2)

- Team Level Limit
To Do In Progress Done

Bob John

3. Add more columns as buffer

Use Pull mode for both development and
test team

- Dev pull from “todo”
- Test pull from “ready-to-test”
- DevOps pull from

“ready-to-release”

To Do In Progress Ready to
Test

Under QA Done

Bob

John

Tom

4. Global priority and late binding

Last Resource Binding
- Task could be implemented by

other developer of the same
component group

Show Global Priority Ordering
- Tasks are sorted by priority, so

everyone can pick task from the
list when extra bandwidth
available

To Do In Progress Ready to
Test

Under QA Done

Bob

John

Tom
1

2

3

4

Bob

Bob

5. Use task breakdown and estimate with cycletime

Instead of using story points, we estimate ETA with the number of tasks and the average
cycletime

 Effort = number_of_sub_task * average_cycletime

Our assumptions:
1. Each team will breakdown task with similar granularity
2. Cycletime will become stable over time

Cycletime = time(“In-Progress”) + time(“Code Complete”)

6. Team grooming with fixed interval

- Run bi-weekly global grooming
- Each team will run grooming meeting within

2 working days after global grooming.
- AC change status from backlog to

“todo” when task are selected for dev
- AC provide ETA estimation to PM

To Do In Progress Ready to
Test

Under QA Done

Bob Tom

Bob

Bob

Grooming Toggle

Key ceremonies for Scrumban

- Grooming (regular & on demand)
- Daily Standup
- Bi-Weekly Retrospective

Comparison of Agile Development Process

1. Use scrum for the feature development of more stable product, where
predictability and commitment is the key

2. Use kanban for small and concrete tasks. Throughput is more important
than schedule

3. Use scrumban when task diversity is high and development resource
are relatively unstable. More flexibility is needed.

DevOps

Modern Software Development Environments

- Production

- Staging

- Testing

- Development

GIT Strategy

- Git Flow

- Github Flow

- Gitlab Flow

- Trunk-Based

Testing Pyramid
● Unit tests are narrow in scope and typically verify the behaviour of individual methods or

functions.

● Integration tests make sure that multiple components behave correctly together. This can

involve several classes as well as testing the integration with other services.

● Acceptance tests are similar to the integration tests but they focus on the business cases

rather than the components themselves.

● UI tests will make sure that the application functions correctly from a user perspective

● E2E test ensure key production features remain un-changed.

CI / CD

- Continuous integration (CI) is a practice where a team of developers integrate
their code early and often to the main branch or code repository. The goal is to
reduce the risk of seeing “integration hell” by waiting for the end of a project or a
sprint to merge the work of all developers.

- Continuous delivery is an extension of continuous integration to make sure that
you can release new changes to your customers quickly in a sustainable way.
This means that on top of having automated your testing, you also have
automated your release process and you can deploy your application at any point
of time by clicking on a button.

https://www.atlassian.com/continuous-delivery

Continuous Delivery v.s. Continuous Deployment

CI In Action

1. Start writing tests for the critical parts of your codebase.

2. Get a CI service to run those tests automatically on every push to the main repository.

3. Make sure that your team integrates their changes everyday.

4. Fix the build as soon as it’s broken.

5. Write tests for every new story that you implement.

https://www.atlassian.com/continuous-delivery/continuous-integration/how-to-get-to-con
tinuous-integration

https://www.atlassian.com/continuous-delivery/continuous-integration/how-to-get-to-continuous-integration
https://www.atlassian.com/continuous-delivery/continuous-integration/how-to-get-to-continuous-integration

CD In Action - Deployment Strategy

https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3

Rolling Blue / Green Canary Release

https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3

Monitoring

- Monitors are equally important as
testcases

- It allow us to respond system issues
efficiently, thus improve customer
satisfacation

- MUST HAVE for critical system features

Site Reliability Engineering

- Improve system observability with logs and alerts
- Measure system reliability with SLI and monitor
- Define incident handling SOP
- Various practices to ensure system reliability

- e.g. Error Budgets

Engineering Culture

Mutual Trust

- Mutual Trust with your team
- Trust Between Peers
- Trust with team leads and manager

Find a Pacer

- Stablize, and then accelerate

- Flying-geese model
-

Open-Minded Debate

We want to avoid group-think

And We agree to disagree

Feedback

- Peer Feedback

- 360 Feedback

- 1x1 Performance Feedback

- Quarterly Performance Feedback

Principles

- We document the best practices and consensus

- These principles are PR reviewed and stored in GIT

Postmortem & Retrospective

- Learn from mistakes. Don’t make it twice
- Keep up the good works

