

Formal Logic

A Pragmatic Introduction (Based on [Gallier 1986] and [Huth and Ryan 2004])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

What It Is

- Logic concerns two concepts:
 - truth (in a specific or general context/model)
 - provability (of truth from assumed truth)
- Formal (symbolic) logic approaches logic by rules for manipulating symbols:
 - syntax rules: for writing statements or formulae. (There are also semantic rules determining whether a statement is true or false in a context or mathematical structure.)
 - inference rules: for obtaining true statements from other true statements.
 - (It is also possible to confirm true statements by considering all possible contexts.)
- 😚 Two main branches of formal logic:
 - 🌻 propositional logic
 - first-order logic (predicate logic/calculus)

Why We Need It (in Software Development)

- Correctness of software hinges on a precise statement of its requirements.
- Logical formulae give the most precise kind of statements about software requirements.
- 😚 The fact that "a software program satisfies a requirement" is very much the same as "a mathematical structure satisfies a logical formula":

$$prog \models req \ \ \text{vs.} \ \ M \models \varphi$$

- To prove (formally verify) that a software program is correct, one may utilize the kind of inferences seen in formal logic.
- The verification may be done manually, semi-automatically, or fully automatically.

Propositions

- A proposition is a statement that is either true or false such as the following:
 - Leslie is a teacher.
 - Leslie is rich.
 - 🌞 Leslie is a pop singer.
- Simplest (atomic) propositions may be combined to form compound propositions:
 - Leslie is not a teacher.
 - 🌞 *Either* Leslie is not a teacher *or* Leslie is not rich.
 - If Leslie is a pop singer, then Leslie is rich.

Inferences

- We are given the following assumptions:
 - Leslie is a teacher.
 - Either Leslie is not a teacher or Leslie is not rich.
 - 🌞 If Leslie is a pop singer, then Leslie is rich.
- We wish to conclude the following:
 - Leslie is not a pop singer.
- The above process is an example of *inference* (deduction). Is it correct?

Symbolic Propositions

- Propositions are represented by *symbols*, when only their truth values are of concern.
 - P: Leslie is a teacher.
 - 🌞 Q: Leslie is rich.
 - 🌞 R: Leslie is a pop singer.
- Compound propositions can then be more succinctly written.
 - not P: Leslie is not a teacher.
 - not P or not Q: Either Leslie is not a teacher or Leslie is not rich.
 - 🌞 R implies Q: If Leslie is a pop singer, then Leslie is rich.

Symbolic Inferences

- We are given the following assumptions:
 - P (Leslie is a teacher.)
 - not P or not Q (Either Leslie is not a teacher or Leslie is not rich.)
 - R implies Q (If Leslie is a pop singer, then Leslie is rich.)
- We wish to conclude the following:
 - 🌻 not R (Leslie is not a pop singer.)
- Correctness of the inference may be checked by asking:
 - * Is (P and (not P or not Q) and (R implies Q)) implies (not R) a tautology (valid formula)?
 - \red Or, is $P \wedge (\neg P \vee \neg Q) \wedge (R \rightarrow Q) \rightarrow \neg R$ valid?

Boolean Expressions and Propositions

- \bigcirc Boolean expressions are essentially propositional formulae, though they may allow more things (e.g., $x \ge 0$) as atomic formulae.
- Boolean expressions following variant syntactical conventions:
 - $(x \lor y \lor \overline{z}) \land (\overline{x} \lor \overline{y}) \land x$
 - $(x + y + \overline{z}) \cdot (\overline{x} + \overline{y}) \cdot x$
 - $ilde{*} \ (a \lor b \lor \overline{c}) \land (\overline{a} \lor \overline{b}) \land a$
 - etc.
- Propositional formula: $(P \lor Q \lor \neg R) \land (\neg P \lor \neg Q) \land P$

Normal Forms

- A literal is an atomic proposition or its negation.
- A propositional formula is in Conjunctive Normal Form (CNF) if it is a conjunction of disjunctions of literals.
 - $(P \lor Q \lor \neg R) \land (\neg P \lor \neg Q) \land P$
 - $\overset{\hspace{0.1em}\mathsf{\#}}{} \ (P \lor Q \lor \neg R) \land (\neg P \lor \neg Q \lor R) \land (P \lor \neg Q \lor \neg R)$
- A propositional formula is in Disjunctive Normal Form (DNF) if it is a disjunction of conjunctions of literals.
 - $(P \land Q \land \neg R) \lor (\neg P \land \neg Q) \lor P$
- A propositional formula is in Negation Normal Form (NNF) if negations occur only in literals.
 - 🌞 CNF or DNF is also NNF (but not vice versa).
 - $(P \land \neg Q) \land (P \lor (Q \land \neg R))$ in NNF, but not CNF or DNF.
- Every propositional formula has an equivalent formula in each of these normal forms.

Models, Satisfiability, and Validity

- Models provide the (semantic) context in which a logic formula is judged to be true or false.
- Models are formally represented as mathematical structures.
- 😚 A formula can be true in one model, but false in another.
- A model satisfies a formula if the formula is true in the model (notation: $M \models \varphi$).
- A formula is *satisfiable* if there is a model that satisfies the formula.
- lacktriangle A formula is \emph{valid} if it is true in every model (notation: $\models arphi$).
 - $\Rightarrow \models A \lor \neg A$
 - $\circledast \models (A \land B) \rightarrow (A \lor B)$

Semantic Entailment

- Let Γ be a set of formulae.
- lacktriangle A model satisfies Γ if the model satisfies every formula in Γ .
- We say that Γ semantically entails C if every model that satisfies Γ also satisfies C, written as $\Gamma \models C$.
 - $A, A \rightarrow B \models B$
 - $A \rightarrow B, \neg B \models \neg A$
- A main ingredient of a logic is a systematic way to draw conclusions of the above form, namely $\Gamma \models C$.

Sequents

- We write " $A_1, A_2, \dots, A_m \vdash C$ " to mean that the truth of formula C follows from the truth of formulae A_1, A_2, \dots, A_m .
- \bigcirc " $A_1, A_2, \cdots, A_m \vdash C$ " is called a sequent.
- In the sequent, A_1, A_2, \cdots, A_m collectively are called the antecedent (also context) and C the consequent.

Note: Many authors prefer to write a sequent as $\Gamma \longrightarrow C$ or $\Gamma \Longrightarrow C$, while reserving the symbol \vdash for provability (deducibility) in the proof (deduction) system under consideration.

Inference Rules

- Inference rules allow one to obtain true statements from other true statements.
- Below is an inference rule for conjunction.

$$\frac{\Gamma \vdash A \qquad \Gamma \vdash B}{\Gamma \vdash A \land B} (\land I)$$

In an inference rule, the upper sequents (above the horizontal line) are called the *premises* and the lower sequent is called the *conclusion*.

Proofs

- A deduction tree is a tree where each node is labeled with a sequent such that, for every internal (non-leaf) node,
 - the label of the node corresponds to the conclusion and
 - * the labels of its children correspond to the premises of an instance of an inference rule.
- A proof tree is a deduction tree, each of whose leaves is labeled with an axiom.
- The root of a deduction or proof tree is called the conclusion.
- A sequent is provable if there exists a proof tree of which it is the conclusion.

Natural Deduction in the Sequent Form

$$\frac{\Gamma \vdash A \qquad \Gamma \vdash B}{\Gamma \vdash A \land B} (\land I)$$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A \land B} (\land I)$$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash B} (\land E_1)$$

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} (\lor I_1)$$

$$\frac{\Gamma \vdash B}{\Gamma \vdash A \lor B} (\lor I_2)$$

$$\frac{\Gamma \vdash A \lor B \qquad \Gamma, A \vdash C \qquad \Gamma, B \vdash C}{\Gamma \vdash C} (\lor E)$$

Natural Deduction (cont.)

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} (\to I) \qquad \frac{\Gamma \vdash A \to B \qquad \Gamma \vdash A}{\Gamma \vdash B} (\to E)$$

$$\frac{\Gamma, A \vdash B \land \neg B}{\Gamma \vdash \neg A} (\neg I) \qquad \frac{\Gamma \vdash A \qquad \Gamma \vdash \neg A}{\Gamma \vdash B} (\neg E)$$

$$\frac{\Gamma \vdash A}{\Gamma \vdash \neg \neg A} (\neg \neg I) \qquad \frac{\Gamma \vdash \neg \neg A}{\Gamma \vdash A} (\neg \neg E)$$

Note: these inference rules collectively are called System ND.

A Proof in Propositional ND

Below is a partial proof of the validity of $P \wedge (\neg P \vee \neg Q) \wedge (R \rightarrow Q) \rightarrow \neg R \text{ in } ND$ where γ denotes $P \wedge (\neg P \vee \neg Q) \wedge (R \rightarrow Q)$.

$$\frac{\vdots}{\frac{\gamma, R \vdash R \to Q}{\gamma, R \vdash R}} \frac{(Ax)}{\gamma, R \vdash R} \frac{\vdots}{(Ax)} \frac{\vdots}{\frac{\gamma, R, Q \vdash P \land \neg P}{\gamma, R \vdash \neg Q}} (\neg I)$$

$$\frac{\frac{\gamma, R \vdash Q \land \neg Q}{\gamma, R \vdash Q \land \neg Q}}{\frac{P \land (\neg P \lor \neg Q) \land (R \to Q) \vdash \neg R}{\vdash P \land (\neg P \lor \neg Q) \land (R \to Q) \to \neg R}} (\to I)$$

Soundness and Completeness

- A deduction (proof) system is *sound* if it produces only semantically valid results, and it is *complete* if every semantically valid result can be produced.
- More formally, a system is sound if, whenever Γ ⊢ C is provable in the system, then Γ ⊨ C.
- **③** A system is complete if, whenever $\Gamma \models C$, then $\Gamma \vdash C$ is provable in the system.
- Soundness allows us to draw semantically valid conclusions from purely syntactical inferences and completeness guarantees that this is always achievable.

Predicates

- A predicate is a "parameterized" statement that, when supplied with actual arguments, is either true or false such as the following:
 - Leslie is a teacher.
 - Chris is a teacher.
 - Leslie is a pop singer.
 - Chris is a pop singer.
- Like propositions, simplest (atomic) predicates may be combined to form compound predicates.

Inferences

- We are given the following assumptions:
 - For any person, either the person is not a teacher or the person is not rich.
 - For any person, if the person is a pop singer, then the person is rich.
- We wish to conclude the following:
 - * For any person, if the person is a teacher, then the person is not a pop singer.

Symbolic Predicates

- Like propositions, predicates are represented by *symbols*.
 - p(x): x is a teacher.
 - price q(x): x is rich.
- Compound predicates can be expressed:
 - * For all x, $r(x) \rightarrow q(x)$: For any person, if the person is a pop singer, then the person is rich.
 - * For all y, $p(y) \rightarrow \neg r(y)$: For any person, if the person is a teacher, then the person is not a pop singer.

Symbolic Inferences

- We are given the following assumptions:
 - \red For all $x, \neg p(x) \lor \neg q(x)$.
 - $ilde{*}$ For all x, r(x) o q(x).
- We wish to conclude the following:
 - $ilde{*}$ For all $x, p(x) o \neg r(x)$.
- To check the correctness of the inference above, we ask:
 - * is ((for all $x, \neg p(x) \lor \neg q(x)$) \land (for all $x, r(x) \to q(x)$)) \to (for all $x, p(x) \to \neg r(x)$) valid?
 - or, is $\forall x (\neg p(x) \lor \neg q(x)) \land \forall x (r(x) \to q(x)) \to \forall x (p(x) \to \neg r(x))$ valid?

Syntax and Semantics by Examples

- A first-order formula is written using logical and non-logical symbols.
 - logical symbols: variables, boolean connectives, and quantifiers (which are standard)
 - non-logical symbols: predicates, functions, and constants (which vary, depending on the purpose)
- \odot Below are some terms and formulae in the simple language with predicate =, function \cdot , and constant e:
 - $\stackrel{\text{\tiny{\$}}}{=}$ terms: e, x, $x \cdot y$, $x \cdot (y \cdot z)$, etc..
 - formulae: $\forall x((x \cdot e = e \cdot x) \land (e \cdot x = x))$ or $\forall x(x \cdot e = e \cdot x = x)$, $\forall x(\forall y(\forall z(x \cdot (y \cdot z) = (x \cdot y) \cdot z))))$ or $\forall x, y, z(x \cdot (y \cdot z) = (x \cdot y) \cdot z)$, etc.
- What do the formulae mean?
 - $(Z, \{+, 0\}) \models \forall x (x \cdot e = e \cdot x = x)$
 - $(Q \setminus \{0\}, \{\times, 1\}) \models \forall x, y, z(x \cdot (y \cdot z) = (x \cdot y) \cdot z)$

What about Types

- Ordinary first-order formulae are interpreted over a single domain of discourse (the universe).
- A variant of first-order logic, called many-sorted (or typed) first-order logic, allows variables of different sorts (which correspond to partitions of the universe).
- When the number of sorts is finite, one can emulate sorts by introducing additional unary predicates in the ordinary first-order logic.
 - Suppose there are two sorts.
 - $ilde{*}$ We introduce two new unary predicates P_1 and P_2 .
 - We then stipulate that $\forall x (P_1(x) \lor P_2(x)) \land \neg (\exists x (P_1(x) \land P_2(x))).$
 - ** For example, $\exists x (P_1(x) \land \varphi(x))$ means that there is an element of the first sort satisfying φ ; $\forall x (P_1(x) \rightarrow \psi(x))$ means that every element of the first sort satisfies ψ .

Free and Bound Variables

- In a formula $\forall xA$ (or $\exists xA$), the variable x is *bound* by the quantifier \forall (or \exists).
- A free variable is one that is not bound.
- 😚 The same variable may have both a free and a bound occurrence.
- For example, consider (∀x(R(x, y) → P(x)) ∧ ∀y(¬R(x, y) ∧ ∀xP(x))). The underlined occurrences of x and y are free, while others are bound.
- A formula is *closed*, also called a *sentence*, if it does not contain a free variable.

Substitutions

- \bigcirc Let t be a term (such as x, g(x,y), etc.) and A a formula.
- The result of substituting t for a free variable x in A is denoted by A[t/x].
- **⋄** Consider $A = \forall x (P(x) \rightarrow Q(x, f(y)))$.
 - $ilde{*}$ When t=g(y), A[t/y]=orall x(P(x) o Q(x,f(g(y)))).
 - For any t, $A[t/x] = \forall x (P(x) \rightarrow Q(x, f(y))) = A$, since there is no free occurrence of x in A.
- A substitution is admissible if no free variable of t would become bound (be captured by a quantifier) after the substitution.
- For example, when t = g(x, y), A[t/y] is not admissible, as the free variable x of t would become bound.

Quantifier Rules of Natural Deduction

$$\frac{\Gamma \vdash A[y/x]}{\Gamma \vdash \forall x A} (\forall I) \qquad \frac{\Gamma \vdash \forall x A}{\Gamma \vdash A[t/x]} (\forall E)$$

$$\frac{\Gamma \vdash A[t/x]}{\Gamma \vdash \exists xA} (\exists I) \qquad \frac{\Gamma \vdash \exists xA \qquad \Gamma, A[y/x] \vdash B}{\Gamma \vdash B} (\exists E)$$

In the rules above, we assume that all substitutions are admissible and y does not occur free in Γ or A.

A Proof in First-Order ND

Below is a partial proof of the validity of $\forall x(\neg p(x) \lor \neg q(x)) \land \forall x(r(x) \to q(x)) \to \forall x(p(x) \to \neg r(x))$ in ND, where γ denotes $\forall x(\neg p(x) \lor \neg q(x)) \land \forall x(r(x) \to q(x))$.

$$\frac{\vdots}{\gamma, p(y), r(y) \vdash r(y) \to q(y)} \frac{\gamma, p(y), r(y) \vdash r(y)}{\gamma, p(y), r(y) \vdash r(y)} (Ax)$$

$$\frac{\gamma, p(y), r(y) \vdash q(y)}{\forall x (\neg p(x) \lor \neg q(x)) \land \forall x (r(x) \to q(x)), p(y), r(y) \vdash q(y) \land \neg q(y)} (\neg I)$$

$$\frac{\forall x (\neg p(x) \lor \neg q(x)) \land \forall x (r(x) \to q(x)), p(y) \vdash \neg r(y)}{\forall x (\neg p(x) \lor \neg q(x)) \land \forall x (r(x) \to q(x)) \vdash p(y) \to \neg r(y)} (\rightarrow I)$$

$$\frac{\forall x (\neg p(x) \lor \neg q(x)) \land \forall x (r(x) \to q(x)) \vdash p(y) \to \neg r(y)}{\forall x (\neg p(x) \lor \neg q(x)) \land \forall x (r(x) \to q(x)) \vdash \forall x (p(x) \to \neg r(x))} (\rightarrow I)$$

$$\frac{\forall x (\neg p(x) \lor \neg q(x)) \land \forall x (r(x) \to q(x)) \vdash \forall x (p(x) \to \neg r(x))}{\forall x (\neg p(x) \lor \neg q(x)) \land \forall x (r(x) \to q(x)) \to \forall x (p(x) \to \neg r(x))} (\rightarrow I)$$

SDM 2020

Equality Rules of Natural Deduction

Let t, t_1, t_2 be arbitrary terms; again, assume all substitutions are admissible.

$$\frac{\Gamma \vdash t = t}{\Gamma \vdash t = t} (= I) \qquad \frac{\Gamma \vdash t_1 = t_2 \qquad \Gamma \vdash A[t_1/x]}{\Gamma \vdash A[t_2/x]} (= E)$$

Note: The = sign is part of the object language, not a meta symbol.

Theory

- 😚 Assume a fixed first-order language.
- \bigcirc A set S of sentences is closed under provability if

$$S = \{A \mid A \text{ is a sentence and } S \vdash A \text{ is provable}\}.$$

- A set of sentences is called a theory if it is closed under provability.
- A theory is typically represented by a smaller set of sentences, called its *axioms*.

Note: a sentence is a formula without free variables. For example, $\forall x (x \ge 0)$ is a sentence, but $x \ge 0$ is not.

Group as a First-Order Theory

- The set of non-logical symbols is $\{\cdot, e\}$, where \cdot is a binary function (operation) and e is a constant (the identity).
- Axioms:

$$\forall a, b, c(a \cdot (b \cdot c) = (a \cdot b) \cdot c)$$

$$\forall a(a \cdot e = e \cdot a = a)$$

$$\forall a(\exists b(a \cdot b = b \cdot a = e))$$

$$\forall a(a \cdot e = e \cdot a = a)$$
 (Identity)
$$\forall a(\exists b(a \cdot b = b \cdot a = e))$$
 (Inverse)

- $(Z, \{+, 0\})$ is a model of the theory.
- So is $(Q \setminus \{0\}, \{\times, 1\})$.
- Additional axiom for Abelian groups:

(Commutativity)

(Associativity)

Theorems

- A theorem is just a statement (sentence) in a theory (a set of sentences).
- For example, the following are theorems in Group theory:
 - $ilde{*} \ orall a orall b orall c((a \cdot b = a \cdot c) o b = c).$
 - * $\forall a \forall b \forall c (((a \cdot b = e) \land (b \cdot a = e) \land (a \cdot c = e) \land (c \cdot a = e)) \rightarrow b = c)$, which says that every element has a unique inverse.