

Software Verification: Hoare Logic and Predicate Transformers

(Based on [Apt and Olderog 1991; Dijkstra 1976; Gries 1981; Hoare 1969; Kleymann 1999; Sethi 1996])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

An Axiomatic View of Programs

- The properties of a program can, in principle, be found out from its text by means of purely deductive reasoning.
- The deductive reasoning involves the application of valid inference rules to a set of valid axioms.
- The choice of axioms will depend on the choice of programming languages.
- We shall introduce such an axiomatic approach, called the Hoare logic, to program correctness.

Assertions

- When executed, a program will evolve through different states, which are essentially a mapping of the program variables to values in their respective domains.
- To reason about correctness of a program, we inevitably need to talk about its states.
- An *assertion* is a precise statement about the state of a program.
- Most interesting assertions can be expressed in a first-order language.

Pre and Post-conditions

- The behavior of a "structured" (single-entry/single-exit) program statement can be characterized by attaching assertions at the entry and the exit of the statement.
- For a statement S, this is conveniently expressed as a so-called *Hoare triple*, denoted $\{P\}$ S $\{Q\}$, where
 - P is called the pre-condition and

Interpretations of a Hoare Triple

- A Hoare triple $\{P\}$ S $\{Q\}$ may be interpreted in two different ways:
 - Partial Correctness: if the execution of S starts in a state satisfying P and terminates, then it results in a state satisfying Q.
 - **Total Correctness**: if the execution of S starts in a state satisfying P, then it will terminate and result in a state satisfying Q.

Note: sometimes we write $\langle P \rangle S \langle Q \rangle$ when total correctness is intended

Pre and Post-Conditions for Specification

Find an integer approximate to the square root of another integer *n*:

$$\{0 \le n\}$$
 ? $\{d^2 \le n < (d+1)^2\}$

or slightly better (clearer about what can be changed)

$$\{0 \le n\} \ d := ? \{d^2 \le n < (d+1)^2\}$$

- Find the index of value x in an array b:
 - $\{x \in b[0..n-1]\}$? $\{0 \le i < n \land x = b[i]\}$
 - * $\{0 < n\}$? $\{(0 \le i < n \land x = b[i]) \lor (i = n \land x \notin b[0..n 1])\}$

Note: there are other ways to stipulate which variables are to be changed and which are not.

6 / 49

A Little Bit of History

The following seminal paper started it all:

C.A.R. Hoare. An axiomatic basis for computer programs. CACM, 12(8):576-580, 1969.

- Interpretation: partial correctness
- Provided axioms and proof rules

Note: R.W. Floyd did something similar for flowcharts earlier in 1967, which was also a precursor of "proof outline" (a program fully annotated with assertions).

The Assignment Statement

😚 Syntax:

$$x := E$$

- Meaning: execution of the assignment x := E (read as "x becomes E'') evaluates E and stores the result in variable x.
- We will assume that expression E in x := E has no side-effect (i.e., does not change the value of any variable).
- Which of the following two Hoare triples is correct about the assignment x := E?
 - P $\{P\} x := E \{P[E/x]\}$
 - $(Q[E/x]) \times = E \{Q\}$

Note: *E* is essentially a first-order term.

Some Hoare Triples for Assignments

- $\{x+1>5\}\ x:=x+1\ \{x>5\}$
- $\{5 \neq 5\} \ x := 5 \ \{x \neq 5\}$

Axiom of the Assignment Statement

$$\frac{}{\{Q[E/x]\} \ x := E \ \{Q\}} \ (Assignment)$$

Why is this so?

- Let s be the state before x := E and s' the state after.
- \P So, s' = s[x := E] assuming E has no side-effect.
- \bigcirc Q[E/x] holds in s if and only if Q holds in s', because
 - $\stackrel{\text{$\rlap$}{$\rlap$}}{}$ every variable, except x, in Q[E/x] and Q has the same value in s and s', and
 - Q[E/x] has every x in Q replaced by E, while Q has every x evaluated to E in s' (= s[x := E]).

The Multiple Assignment Statement

Syntax:

$$x_1, x_2, \cdots, x_n := E_1, E_2, \cdots, E_n$$

where x_i 's are distinct variables.

- Meaning: execution of the multiple assignment evaluates all E_i 's and stores the results in the corresponding variables x_i 's.
- Examples:
 - i,j := 0,0 (initialize i and j to 0)
 - $\stackrel{*}{=} x, y := y, x$ (swap x and y)
 - $ilde{*} \; g,p:=g+1,p-1$ (increment g by 1, while decrement p by 1)
 - i, x := i + 1, x + i (increment i by 1 and x by i)

Some Hoare Triples for Multi-assignments

Swapping two values

$${x < y} x, y := y, x {y < x}$$

Number of games in a tournament

$${g + p = n} \ g, p := g + 1, p - 1 \ {g + p = n}$$

🕝 Taking a sum

$$\{x + i = 1 + 2 + \dots + (i + 1 - 1)\}\$$

$$i, x := i + 1, x + i$$

$$\{x = 1 + 2 + \dots + (i - 1)\}\$$

Simultaneous Substitution

- P[E/x] can be naturally extended to allow E to be a list E_1, E_2, \dots, E_n and x to be x_1, x_2, \dots, x_n , all of which are distinct variables
- P[E/x] is then the result of simultaneously replaying x_1, x_2, \dots, x_n with the corresponding expressions E_1, E_2, \dots, E_n ; enclose E_i 's in parentheses if necessary.
- 😚 Examples:
 - (x < y)[y, x/x, y] = (y < x)
 - (g + p = n)[g + 1, p 1/g, p] = ((g + 1) + (p 1) = n) =(g + p = n)
 - $(x = 1 + 2 + \cdots + (i 1))[i + 1, x + i/i, x]$ $= ((x+i) = 1+2+\cdots+((i+1)-1))$ $= (x + i = 1 + 2 + \cdots + ((i + 1) - 1))$

Axiom of the Multiple Assignment

Syntax:

$$x_1, x_2, \cdots, x_n := E_1, E_2, \cdots, E_n$$

where x_i 's are distinct variables.

Axiom:

$$\overline{\{Q[E_1,\cdots,E_n/x_1,\cdots,x_n]\}\ x_1,\cdots,x_n:=E_1,\cdots,E_n\ \{Q\}}$$
 (Assign.)

Assignment to an Array Entry

Syntax:

$$b[i] := E$$

Notation for an altered array: (b; i : E) denotes the array that is identical to b, except that entry i stores the value of E.

$$(b; i : E)[j] = \begin{cases} E & \text{if } i = j \\ b[j] & \text{if } i \neq j \end{cases}$$

Axiom:

$$\frac{1}{\{Q[(b;i:E)/b]\}\ b[i]:=E\ \{Q\}} (Assignment)$$

Pre and Post-condition of a Loop

- A precondition just before a loop can capture the conditions for executing the loop.
- An assertion just within a loop body can capture the conditions for staying in the loop.
- A postcondition just after a loop can capture the conditions upon leaving the loop.

A Simple Example


```
\{x \ge 0 \land y > 0\}

while x \ge y do

\{x \ge 0 \land y > 0 \land x \ge y\}

x := x - y

od

\{x \ge 0 \land y > 0 \land x \not\ge y\}

// or

\{x \ge 0 \land y > 0 \land x < y\}
```

More about the Example

We can say more about the program.

```
// may assume x, y := m, n here for some m \ge 0 and n > 0 \{x \ge 0 \land y > 0 \land (x \equiv m \pmod{y})\} while x \ge y do x := x - y od \{x \ge 0 \land y > 0 \land (x \equiv m \pmod{y}) \land x < y\}
```

Note: repeated subtraction is a way to implement the integer division. So, the program is taking the residue of x divided by y.

A Simple Programming Language

To study inference rules of Hoare logic, we consider a simple programming language with the following syntax for statements:

```
S ::=  skip

| x := E

| S_1; S_2

|  if B then S fi

|  if B then S_1 else S_2 fi

|  while B do S od
```

Proof Rules

"if *B* then *S* fi" can be treated as "if *B* then *S* else skip fi" or directly with the following rule:

$$\frac{\{P \land B\} \ S \ \{Q\} \qquad P \land \neg B \to Q}{\{P\} \ \text{if} \ B \ \text{then} \ S \ \text{fi} \ \{Q\}}$$

 $\{P\}$ if B then S_1 else S_2 fi $\{Q\}$

(If-Then)

Proof Rules (cont.)

$$\frac{\{P \land B\} \ S \ \{P\}}{\{P\} \ \text{while} \ B \ \text{do} \ S \ \text{od} \ \{P \land \neg B\}}$$

$$\frac{P \rightarrow P' \qquad \{P'\} \ S \ \{Q'\} \qquad Q' \rightarrow Q}{\{P\} \ S \ \{Q\}}$$
(Consequence)

Note: with a suitable notion of validity, the set of proof rules up to now can be shown to be sound and (relatively) complete for programs that use only the considered constructs.

Some Auxiliary Rules

$$\frac{P \to P' \qquad \{P'\} \ S \ \{Q\}}{\{P\} \ S \ \{Q\}}$$

$$\frac{\{P\}\ S\ \{Q'\}\qquad Q'\to Q}{\{P\}\ S\ \{Q\}}$$

$$\frac{\{P_1\} \ S \ \{Q_1\} \qquad \{P_2\} \ S \ \{Q_2\}}{\{P_1 \land P_2\} \ S \ \{Q_1 \land Q_2\}}$$

$$\frac{\{P_1\} \ S \ \{Q_1\} \qquad \{P_2\} \ S \ \{Q_2\}}{\{P_1 \lor P_2\} \ S \ \{Q_1 \lor Q_2\}}$$

Note: these rules provide more convenience, but do not actually add deductive power.

Invariants

- An invariant at some point of a program is an assertion that holds whenever execution of the program reaches that point.
- Assertion P in the rule for a while loop is called a loop invariant of the while loop.
- An assertion is called an invariant of an operation (a segment of code) if, assumed true before execution of the operation, the assertion remains true after execution of the operation.
- Invariants are a bridge between the static text of a program and its dynamic computation.

Program Annotation

• Inserting assertions/invariants in a program as comments helps understanding of the program.

```
 \{x \ge 0 \land y > 0 \land (x \equiv m \pmod{y})\}  while x \ge y do  \{x \ge 0 \land y > 0 \land x \ge y \land (x \equiv m \pmod{y})\}   x := x - y   \{y > 0 \land x \ge 0 \land (x \equiv m \pmod{y})\}  od  \{x \ge 0 \land y > 0 \land (x \equiv m \pmod{y}) \land x < y\}
```

- A correct annotation of a program can be seen as a partial proof outline for the program.
- Boolean assertions can also be used as an aid to program testing.

An Annotated Program


```
\{x \geq 0 \land y \geq 0 \land gcd(x, y) = gcd(m, n)\}
while x \neq 0 and y \neq 0 do
    \{x \geq 0 \land y \geq 0 \land gcd(x, y) = gcd(m, n)\}
    if x < y then x, y := y, x fi;
    \{x > y \land y > 0 \land gcd(x, y) = gcd(m, n)\}\
    x := x - y
    \{x > 0 \land y > 0 \land gcd(x, y) = gcd(m, n)\}
od
\{(x=0 \land v > 0 \land v = gcd(x,v) = gcd(m,n)\} \lor \}
 \{x > 0 \land y = 0 \land x = gcd(x, y) = gcd(m, n)\}
```

Note: m and n are two arbitrary non-negative integers, at least one of which is nonzero.



Total Correctness: Termination

- All inference rules introduced so far, except the while rule, work for total correctness.
- Below is a rule for the total correctness of the **while** statement:

$$\{P \wedge B\} S \{P\} \qquad \{P \wedge B \wedge t = Z\} S \{t < Z\} \qquad P \rightarrow (t \ge 0)$$

$$\{P\}$$
 while B do S od $\{P \land \neg B\}$

where t is an integer-valued expression (state function) and Z is a "rigid" variable that does not occur in P, B, t, or S.

 \bigcirc The above function t is called a rank (or variant) function.

Termination of a Simple Program

$$g,p:=0,n;\quad //\ n\geq 1$$
 while $p\geq 2$ do $g,p:=g+1,p-1$ od

- ou
 - ${\color{red} lacktrightarrowtill} lacktright {f O}$ Loop Invariant: $(g+p=n) \wedge (p\geq 1)$
 - 🕝 Rank (Variant) Function: p
 - The loop terminates when $p = 1 \ (p \ge 1 \land p \not \ge 2)$.

Well-Founded Sets

- lacktriangle A binary relation $\preceq \subseteq A \times A$ is a **partial order** if it is
 - \circledast reflexive: $\forall x \in A(x \leq x)$,
 - $ilde{*}$ transitive: $\forall x,y,z\in A((x\preceq y\wedge y\preceq z)\to x\preceq z)$, and
 - \Rightarrow antisymmetric: $\forall x, y \in A((x \leq y \land y \leq x) \rightarrow x = y)$.
- A partially ordered set (W, ≤) is well-founded if there is no infinite decreasing chain $x_1 \succ x_2 \succ x_3 \succ \cdots$ of elements from W. (Note: "x \subseteq y" means "y ≤ x \land y \neq x".)
- Examples:
 - $\stackrel{*}{=} (Z_{\geq 0}, \leq)$
 - $(Z_{\geq 0} \times Z_{\geq 0}, \leq)$, where $(x_1, y_1) \leq (x_2, y_2)$ if $(x_1 < x_2) \vee (x_1 = x_2 \wedge y_1 \leq y_2)$

Termination by Well-Founded Induction

Below is a more general rule for the total correctness of the **while** statement:

where (W, \preceq) is a well-founded set, δ is a state function, and D is a "rigid" variable ranged over W that does not occur in P, B, δ , or S.

Nondeterminism

Syntax of the Alternative Statement:

$$\begin{array}{c} \textbf{if} \ B_1 \rightarrow S_1 \\ \parallel B_2 \rightarrow S_2 \\ \dots \\ \parallel B_n \rightarrow S_n \end{array}$$

Each of the " $B_i \rightarrow S_i$ " s is called a guarded command, where B_i is the guard of the command and S_i the body.

- Semantic:
 - 1. One of the guarded commands, whose guard evaluates to true, is nondeterministically selected and its body executed.
 - 2. If none of the guards evaluates to true, then the execution aborts.

Rule for the Alternative Statement

The Alternative Statement:

$$\begin{array}{c} \textbf{if} \ B_1 \rightarrow S_1 \\ \parallel B_2 \rightarrow S_2 \\ \cdots \\ \parallel B_n \rightarrow S_n \\ \textbf{fi} \end{array}$$

Inference rule:

$$\frac{P \to B_1 \lor \dots \lor B_n \qquad \{P \land B_i\} \ S_i \ \{Q\}, \text{ for } 1 \le i \le n}{\{P\} \ \text{if} \ B_1 \to S_1 \| \dots \| \ B_n \to S_n \ \text{fi} \ \{Q\}}$$

The Coffee Can Problem as a Program


```
\begin{array}{l} B,\,W\,:=\,m,\,n;\,\,\,//\,\,m>0\,\wedge\,n>0\\ \textbf{while}\,\,B+W\geq 2\,\,\textbf{do}\\ &\textbf{if}\,\,B\geq 0\,\wedge\,W>1\,\rightarrow\,B,\,W\,:=\,B+1,\,W-2\,\,\,\,//\,\,\text{same color}\\ &\parallel B>1\,\wedge\,W\geq 0\,\rightarrow\,B,\,W\,:=\,B-1,\,W\,\,\,\,//\,\,\text{same color}\\ &\parallel B>0\,\wedge\,W>0\,\rightarrow\,B,\,W\,:=\,B-1,\,W\,\,\,\,//\,\,\text{different colors}\\ &\textbf{fi} \end{array}
```

- od
 - ightharpoonup Loop Invariant: $W\equiv n\ ({
 m mod}\ 2)\quad ({
 m and}\ B+W\geq 1)$
 - Variant (Rank) Function: B + W
 - igoplus The loop terminates when B+W=1.

Predicate Transformers: Basic Idea

- The execution of a sequential program, if terminating, transforms the initial state into some final state.
- If, for any given postcondition, we know the weakest precondition that guarantees termination of the program in a state satisfying the postcondition,

then we have fully understood the meaning of the program.

Note: the weakest precondition is the weakest in the sense that it identifies all the desired initial states and nothing else.

The Predicate Transformer wp

- ullet For a program S and a predicate (or an assertion) Q, let wp(S,Q) denote the aformentioned weakest precondition.
- 😚 Therefore, we can see a program as a predicate transformer $wp(S, \cdot)$, transforming a postcondition Q (a predicate) into its weakest precondition wp(S, Q).
- If the execution of S starts in a state satisfying wp(S, Q), it is guaranteed to terminate and result in a state satisfying Q.

Note: there is a weaker variant of wp, called wlp (weakest liberal precondition), which is defined almost identical to wp except that termination is not guaranteed.

Hoare Triples in Terms of wp

- When total correctness is meant, $\{P\}$ S $\{Q\}$ can be understood as saying $P \Rightarrow wp(S, Q)$.
- In fact, with a suitable formal definition, wp provides a semantic foundation for the Hoare logic.
- The precondition P here may be as weak as wp(S, Q), but often a stronger and easier-to-find P is all that is needed.

Properties of wp

Fundamental Properties (Axioms):

- **Q** Law of the Excluded Miracle: $wp(S, false) \equiv false$
- **Obstributivity of Conjunction:** $wp(S, Q_1) \land wp(S, Q_2) \equiv wp(S, Q_1 \land Q_2)$
- **Distributivity of Disjunction** for deterministic S: $wp(S, Q_1) \lor wp(S, Q_2) \equiv wp(S, Q_1 \lor Q_2)$

Derived Properties:

- Law of Monotonicity: if $Q_1 \Rightarrow Q_2$, then $wp(S, Q_1) \Rightarrow wp(S, Q_2)$
- **Obstributivity of Disjunction** for nondeterministic $S: wp(S, Q_1) \vee wp(S, Q_2) \Rightarrow wp(S, Q_1 \vee Q_2)$

Predicate Calculation

- Equivalence is preserved by substituting equals for equals
- Example:

$$(A \lor B) \to C$$

$$\equiv \{A \to B \equiv \neg A \lor B\}$$

$$\neg (A \lor B) \lor C$$

$$\equiv \{\text{de Morgan's law }\}$$

$$(\neg A \land \neg B) \lor C$$

$$\equiv \{\text{distributive law }\}$$

$$(\neg A \lor C) \land (\neg B \lor C)$$

$$\equiv \{A \to B \equiv \neg A \lor B\}$$

$$(A \to C) \land (B \to C)$$

Predicate Calculation (cont.)

- Entailment distributes over conjunction, disjunction, quantification, and the consequence of an implication.
- Example:

Some Laws for Predicate Calculation

- Equivalence is commutative and associative
 - $\bullet A \leftrightarrow B \equiv B \leftrightarrow A$
- $igcolumn{ } igcolumn{ } ig$
- $\bigcirc \neg A \land A \equiv false$
- $\bigcirc A \rightarrow B \equiv \neg A \lor B$
- $lacktriangledown A
 ightarrow false \equiv
 eg A$

- $\bigcirc A \wedge B \Rightarrow A$

Some Laws for Predicate Calculation (cont.)

- \bigcirc $\exists x (A \land B) \equiv A \land \exists x B$, if x is not free in A.

"Extreme" Programs

- $wp(\mathbf{skip}, Q) \stackrel{\Delta}{=} Q$
- wp(choose $x, x \in Dom(x)$) $\stackrel{\triangle}{=}$ true
- $wp({\bf choose} \ x, Q) \stackrel{\Delta}{=} Q$, if x is not free in Q
- $wp(\mathbf{abort}, Q) \stackrel{\triangle}{=} false$

The Assignment Statement

Syntax: x := E

Note: this becomes a multiple assignment, if we view x as a list of distinct variables and E as a list of expressions.

• Semantics: $wp(x := E, Q) \stackrel{\triangle}{=} Q[E/x]$.

Sequencing

- Syntax: S_1 ; S_2
- Semantics: $wp(S_1; S_2, Q) \stackrel{\triangle}{=} wp(S_1, wp(S_2, Q))$.

The Alternative Statement

Syntax:

IF: **if**
$$B_1 \rightarrow S_1$$

 $\parallel B_2 \rightarrow S_2$
 \cdots
 $\parallel B_n \rightarrow S_n$
fi

Semantics:

$$wp(\text{IF}, Q) \triangleq (\exists i : 1 \leq i \leq n : B_i) \\ \land (\forall i : 1 \leq i \leq n : B_i \rightarrow wp(S_i, Q))$$

The case of simple IF:

$$wp(\mathbf{if}\ B \to S\ \mathbf{fi}, Q) \stackrel{\Delta}{=} B \land (B \to wp(S, Q))$$

The Alternative Statement (cont.)

Suppose there exists a predicate *P* such that

- 1. $P \Rightarrow (\exists i : 1 \leq i \leq n : B_i)$ and
- 2. $\forall i: 1 \leq i \leq n: P \wedge B_i \Rightarrow wp(S_i, Q)$.

Then $P \Rightarrow wp(IF, Q)$.

😚 Inference rule in the Hoare logic:

$$\frac{P \Rightarrow (\exists i : 1 \le i \le n : B_i) \qquad \forall i : 1 \le i \le n : \{P \land B_i\} \ S_i \ \{Q\}\}}{\{P\} \ \text{IF} : \ \textbf{if} \ B_1 \rightarrow S_1 \llbracket \cdots \llbracket \ B_n \rightarrow S_n \ \textbf{fi} \ \{Q\}}$$

The case of simple IF:

$$\frac{P \Rightarrow B \qquad \{P \land B\} \ S \ \{Q\}}{\{P\} \ \text{if} \ B \rightarrow S \ \text{fi} \ \{Q\}}$$

The Iterative Statement

😚 Syntax:

Each of the " $B_i \rightarrow S_i$ "s is a guarded command.

- \bullet Informal description: Choose (nondeterministically) a guard B_i that evaluates to true and execute the corresponding command S_i . If none of the guards evaluates to true, then the execution terminates.
- The usual "**while** B **do** S **od**" can be defined as this simple while-loop: "do $B \rightarrow S$ od".

The Iterative Statement (cont.)

- **⋄** Let BB denote $\exists i : 1 \leq i \leq n : B_i$, i.e., $B_1 \lor B_2 \lor \cdots \lor B_n$.
- The DO statement is equivalent to

do BB
$$ightarrow$$
 if $B_1
ightarrow S_1$

$$\parallel B_2
ightarrow S_2$$

$$\cdots$$

$$\parallel B_n
ightarrow S_n$$
if

od

or simply **do** $BB \rightarrow IF$ **od**.

This suggests that we could have got by with just the simple while-loop.

A Theorem for Simple DO

Suppose there exist a predicate P and an integer-valued expression t such that

- 1. $P \wedge B \Rightarrow wp(S, P)$,
- 2. $P \Rightarrow (t \ge 0)$, and
- 3. $P \wedge B \wedge (t = t_0) \Rightarrow wp(S, t < t_0)$, where t_0 is a rigid variable.

Then $P \Rightarrow wp(\mathbf{do} B \rightarrow S \mathbf{od}, P \land \neg B)$.

This is to be contrasted by

$$\{P \wedge B\} S \{P\} \qquad \{P \wedge B \wedge t = Z\} S \{t < Z\} \qquad P \Rightarrow (t \ge 0)$$

 $\{P\}$ while B do S od $\{P \land \neg B\}$

References

- K.R. Apt and E.-R. Olderog. Verification of Sequential and Concurrent Programs, Springer-Verlag, 1991.
- E.W. Dijkstra. A Discipline of Programming, Prentice-Hall, 1976.
- OD. Gries. The Science of Programming, Springer-Verlag, 1981.
- C.A.R. Hoare. An axiomatic basis for computer programming. CACM, 12(10):576–583, 1969.
- T. Kleymann. Hoare logic and auxiliary variables. Formal Aspects of Computing, 11:541–566, 1999.
- R. Sethi. Programming Languages: Concepts and Constructs, 2nd Ed., Addison-Wesley, 1996.