Formal Logic
 A Pragmatic Introduction
 (Based on [Gallier 1986] and [Huth and Ryan 2004])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Prelude: Ambiguity in Natural Language

- Two signs at the foot of a public escalator:

Shoes must be worn
, Dogs must be carried
What do they mean?

Prelude: Ambiguity in Natural Language

- Two signs at the foot of a public escalator:
* Shoes must be worn
, Dogs must be carried
What do they mean?
- In logic, "Shoes must be worn" may be stated as:
$\forall x($ OnEscalator $(x) \rightarrow \exists y($ PairOfShoes $(y) \wedge$ IsWearing $(x, y))))$.

Prelude: Ambiguity in Natural Language

- Two signs at the foot of a public escalator:
* Shoes must be worn
, Dogs must be carried
What do they mean?
- In logic, "Shoes must be worn" may be stated as:
$\forall x($ OnEscalator $(x) \rightarrow \exists y($ PairOfShoes $(y) \wedge \operatorname{IsWearing}(x, y))))$.
And, "Dogs must be carried" as:
$\forall x($ OnEscalator $(x) \wedge \operatorname{Is} \operatorname{Dog}(x) \rightarrow \operatorname{IsCarried}(x))$.

Prelude: Ambiguity in Natural Language

Two signs at the foot of a public escalator:
Shoes must be worn
, Dogs must be carried
What do they mean?

- In logic, "Shoes must be worn" may be stated as:
$\forall x($ OnEscalator $(x) \rightarrow \exists y($ PairOfShoes $(y) \wedge$ IsWearing $(x, y))))$.
And, "Dogs must be carried" as:
$\forall x($ OnEscalator $(x) \wedge \operatorname{IsDog}(x) \rightarrow \operatorname{IsCarried}(x))$.
- Note that the logic used above is "untyped" classical first-order logic; types, if needed, are enforced by predicates.

Prelude: Ambiguity in Natural Language

Two signs at the foot of a public escalator:
Shoes must be worn
, Dogs must be carried
What do they mean?

- In logic, "Shoes must be worn" may be stated as:
$\forall x($ OnEscalator $(x) \rightarrow \exists y($ PairOfShoes $(y) \wedge \operatorname{IsWearing}(x, y))))$.
And, "Dogs must be carried" as:
$\forall x($ OnEscalator $(x) \wedge \operatorname{IsDog}(x) \rightarrow \operatorname{IsCarried}(x))$.
- Note that the logic used above is "untyped" classical first-order logic; types, if needed, are enforced by predicates.

Source: the example is due to M. Jackson [Jackson 1995].

What Formal Logic Is

Logic concerns two concepts:
6 truth (in a specific or general context/model)

* provability (of truth from assumed truth)
- Formal (symbolic) logic approaches logic by rules for manipulating symbols:
syntax rules: for writing statements or formulae.
(There are also semantic rules determining whether a statement is true or false in a context or mathematical structure.)
inference rules: for obtaining true statements from other true statements.
(It is also possible to confirm true statements by considering all possible contexts.)
Two main branches of formal logic:
propositional logic (sentential logic; cf. Boolean algebra)
first-order logic (predicate logic/calculus)

Why We Need It in Software Development

- Correctness of software hinges on a precise statement of its requirements.
- Logical formulae give the most precise kind of statements about software requirements.
- The fact that "a software program satisfies a requirement" is very much the same as "a mathematical structure satisfies a logical formula":

$$
\text { prog } \models \text { req vs. } M \models \varphi
$$

To prove (formally verify) that a software program is correct, one may utilize the kind of inferences seen in formal logic.
The verification may be done manually, semi-automatically, or fully automatically.

Propositions

A proposition is a statement that is either true or false such as the following:
Leslie is a teacher.
Leslie is rich.
Leslie is a pop singer.

- Simplest (atomic) propositions may be combined to form compound propositions:
. Leslie is not a teacher.
* Either Leslie is not a teacher or Leslie is not rich.
* If Leslie is a pop singer, then Leslie is rich.

Inferences

We are given the following assumptions:
Leslie is a teacher.
*) Either Leslie is not a teacher or Leslie is not rich.
If Leslie is a pop singer, then Leslie is rich.
We wish to conclude the following:
Leslie is not a pop singer.
The above process is an example of inference (deduction). Is it correct?

Symbolic Propositions

Propositions are represented by symbols，when only their truth values are of concern．

部 P ：Leslie is a teacher．
＊Q ：Leslie is rich．
＊Leslie is a pop singer．
Compound propositions can then be more succinctly written．
数 not P ：Leslie is not a teacher．
not P or not Q ：Either Leslie is not a teacher or Leslie is not rich．
有 R implies Q ：If Leslie is a pop singer，then Leslie is rich．

Symbolic Inferences

We are given the following assumptions:

* P (Leslie is a teacher.)
not P or not Q (Either Leslie is not a teacher or Leslie is not rich.)
* R implies Q (If Leslie is a pop singer, then Leslie is rich.)

We wish to conclude the following:
not R (Leslie is not a pop singer.)
Correctness of the inference may be checked by asking:

* Is (P and (not P or not Q) and (R implies Q)) implies (not R) a tautology (valid formula)?
Or, is $P \wedge(\neg P \vee \neg Q) \wedge(R \rightarrow Q) \rightarrow \neg R$ valid?

Boolean Expressions and Propositions

Boolean expressions are essentially propositional formulae, though they may allow more things (e.g., $x \geq 0$) as atomic formulae.
Boolean expressions following variant syntactical conventions:
$(x \vee y \vee \bar{z}) \wedge(\bar{x} \vee \bar{y}) \wedge x$
($x+y+\bar{z}) \cdot(\bar{x}+\bar{y}) \cdot x$
$(a \vee b \vee \bar{c}) \wedge(\bar{a} \vee \bar{b}) \wedge a$
etc.
Propositional formula: $(P \vee Q \vee \neg R) \wedge(\neg P \vee \neg Q) \wedge P$

Normal Forms

A literal is an atomic proposition or its negation.
A propositional formula is in Conjunctive Normal Form (CNF) if it is a conjunction of disjunctions of literals.

$$
\begin{aligned}
& (P \vee Q \vee \neg R) \wedge(\neg P \vee \neg Q) \wedge P \\
& (P \vee Q \vee \neg R) \wedge(\neg P \vee \neg Q \vee R) \wedge(P \vee \neg Q \vee \neg R)
\end{aligned}
$$

A propositional formula is in Disjunctive Normal Form (DNF) if it is a disjunction of conjunctions of literals.

$$
\begin{aligned}
& (P \wedge Q \wedge \neg R) \vee(\neg P \wedge \neg Q) \vee P \\
& (\neg P \wedge \neg Q \wedge R) \vee(P \wedge Q \wedge \neg R) \vee(\neg P \wedge Q \wedge R)
\end{aligned}
$$

- A propositional formula is in Negation Normal Form (NNF) if negations occur only in literals.

CNF or DNF is also NNF (but not vice versa).
$(P \wedge \neg Q) \wedge(P \vee(Q \wedge \neg R))$ in NNF, but not CNF or DNF.
Every propositional formula has an equivalent formula in each of these normal forms.

Models, Satisfiability, and Validity

- Models provide the (semantic) context in which a logic formula is judged to be true or false.
Models are formally represented as mathematical structures.
A formula can be true in one model, but false in another.
A model satisfies a formula if the formula is true in the model (notation: $M \models \varphi$).

$$
v(P)=F, v(Q)=T \models(P \vee Q) \wedge(\neg P \vee \neg Q)
$$

A formula is satisfiable if there is a model that satisfies the formula.
A formula is valid if it is true in every model (notation: $\models \varphi$).
, $\vDash A \vee \neg A$
$\vDash(A \wedge B) \rightarrow(A \vee B)$

Semantic Entailment

Let Γ be a set of formulae.
A model satisfies Γ if the model satisfies every formula in Γ.
We say that Γ semantically entails C if every model that satisfies Γ also satisfies C, written as $\Gamma \models C$.
, $A, A \rightarrow B \models B$

- A main ingredient of a logic is a systematic way to draw conclusions of the above form, namely $\Gamma \models C$.

Sequents

- We write " $A_{1}, A_{2}, \cdots, A_{m} \vdash C$ " to mean that the truth of formula C follows from the truth of formulae $A_{1}, A_{2}, \cdots, A_{m}$." $A_{1}, A_{2}, \cdots, A_{m} \vdash C$ " is called a sequent.
In the sequent, $A_{1}, A_{2}, \cdots, A_{m}$ collectively are called the antecedent (also context) and C the consequent.

Note: Many authors prefer to write a sequent as $\Gamma \longrightarrow C$ or $\Gamma \Longrightarrow C$, while reserving the symbol \vdash for provability (deducibility) in the proof (deduction) system under consideration.

Inference Rules

- Inference rules allow one to obtain true statements from other true statements.
Below is an inference rule for conjunction.

$$
\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \wedge B}(\wedge I)
$$

- In an inference rule, the upper sequents (above the horizontal line) are called the premises and the lower sequent is called the conclusion.

Proofs

A deduction tree is a tree where each node is labeled with a sequent such that, for every internal (non-leaf) node,
the label of the node corresponds to the conclusion and
清 the labels of its children correspond to the premises of an instance of an inference rule.

- A proof tree is a deduction tree, each of whose leaves is labeled with an axiom.
The root of a deduction or proof tree is called the conclusion.
A sequent is provable if there exists a proof tree of which it is the conclusion.

Natural Deduction in the Sequent Form

$$
\overline{\Gamma, A \vdash A}(A x)
$$

$$
\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \wedge B}(\wedge I)
$$

$$
\begin{aligned}
& \frac{\Gamma \vdash A \wedge B}{\Gamma \vdash A}\left(\wedge E_{1}\right) \\
& \frac{\Gamma \vdash A \wedge B}{\Gamma \vdash B}\left(\wedge E_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\Gamma \vdash A}{\Gamma \vdash A \vee B}\left(\vee I_{1}\right) \\
& \frac{\Gamma \vdash B}{\Gamma \vdash A \vee B}\left(\vee I_{2}\right)
\end{aligned}
$$

Natural Deduction (cont.)

$$
\frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B}(\rightarrow I)
$$

$$
\frac{\Gamma \vdash A \rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash B}(\rightarrow E)
$$

$$
\frac{\Gamma, A \vdash B \wedge \neg B}{\Gamma \vdash \neg A}(\neg I)
$$

$$
\frac{\Gamma \vdash A \quad \Gamma \vdash \neg A}{\Gamma \vdash B}(\neg E)
$$

$$
\frac{\Gamma \vdash A}{\Gamma \vdash \neg \neg A}(\neg \neg /)
$$

$$
\frac{\Gamma \vdash \neg \neg A}{\Gamma \vdash A}(\neg \neg E)
$$

Note: these inference rules collectively are called System ND.

A Proof in Propositional ND

Below is a partial proof of the validity of
$P \wedge(\neg P \vee \neg Q) \wedge(R \rightarrow Q) \rightarrow \neg R$ in $N D$, where γ denotes $P \wedge(\neg P \vee \neg Q) \wedge(R \rightarrow Q)$.

$$
\frac{\frac{\vdots}{\gamma, R \vdash R \rightarrow Q} \quad \overline{\gamma, R \vdash R}(A x) \quad \frac{\vdots}{\gamma, R, Q \vdash P \wedge \neg P}(\rightarrow E) \quad \frac{\gamma}{\gamma, R \vdash \neg Q}(\neg I)}{\frac{\gamma, R \vdash Q}{}(\wedge I)} \begin{gathered}
\frac{\gamma \wedge R \vdash Q \wedge \neg Q}{\vdash P \wedge(\neg P \vee \neg Q) \wedge(R \rightarrow Q) \vdash \neg R}(\neg I) \\
\frac{P \wedge(\neg P \vee \neg Q) \wedge(R \rightarrow Q) \rightarrow \neg R}{}(\rightarrow I)
\end{gathered}
$$

Soundness and Completeness

A deduction (proof) system is sound if it produces only semantically valid results, and it is complete if every semantically valid result can be produced.

- More formally, a system is sound if, whenever $\Gamma \vdash C$ is provable in the system, then $\Gamma \models C$.
- A system is complete if, whenever $\Gamma \models C$, then $\Gamma \vdash C$ is provable in the system.
Soundness allows us to draw semantically valid conclusions from purely syntactical inferences and completeness guarantees that this is always achievable.

Predicates

A predicate is a "parameterized" statement that, when supplied with actual arguments, is either true or false such as the following:
. Leslie is a teacher.
Chris is a teacher.
, Leslie is a pop singer.
Chris is a pop singer.
Like propositions, simplest (atomic) predicates may be combined to form compound predicates.

Inferences

We are given the following assumptions:
6or any person, either the person is not a teacher or the person is not rich.

* For any person, if the person is a pop singer, then the person is rich.
We wish to conclude the following:
*) For any person, if the person is a teacher, then the person is not a pop singer.

Symbolic Predicates

Like propositions, predicates are represented by symbols.
業 $p(x)$: x is a teacher.
, $q(x): x$ is rich.

* $r(y)$: y is a pop singer.
- Compound predicates can be expressed:

For all $x, r(x) \rightarrow q(x)$: For any person, if the person is a pop singer, then the person is rich.
For all $y, p(y) \rightarrow \neg r(y)$: For any person, if the person is a teacher, then the person is not a pop singer.

Symbolic Inferences

- We are given the following assumptions:

For all $x, \neg p(x) \vee \neg q(x)$.
, For all $x, r(x) \rightarrow q(x)$.
We wish to conclude the following:
For all $x, p(x) \rightarrow \neg r(x)$.

- To check the correctness of the inference above, we ask:
is $(($ for all $x, \neg p(x) \vee \neg q(x)) \wedge($ for all $x, r(x) \rightarrow q(x))) \rightarrow$
(for all $x, p(x) \rightarrow \neg r(x)$) valid?
or, is
$\forall x(\neg p(x) \vee \neg q(x)) \wedge \forall x(r(x) \rightarrow q(x)) \rightarrow \forall x(p(x) \rightarrow \neg r(x))$
valid?

Syntax and Semantics by Examples

A first-order formula is written using logical and non-logical symbols.
logical symbols: variables, boolean connectives, and quantifiers (which are standard)
non-logical symbols: predicates, functions, and constants (which vary, depending on the purpose)

- Below are some terms and formulae in the simple language with predicate $=$, function \cdot, and constant e :
terms: $e, x, x \cdot y, x \cdot(y \cdot z)$, etc..
formulae: $\forall x((x \cdot e=e \cdot x) \wedge(e \cdot x=x))$ or
$\forall x(x \cdot e=e \cdot x=x)$,
$\forall x(\forall y(\forall z(x \cdot(y \cdot z)=(x \cdot y) \cdot z))))$ or
$\forall x, y, z(x \cdot(y \cdot z)=(x \cdot y) \cdot z)$, etc.
What do the formulae mean?

$$
\begin{aligned}
& (Z,\{+, 0\}) \models \forall x(x \cdot e=e \cdot x=x) \\
& (Q \backslash\{0\},\{x, 1\}) \models \forall x, y, z(x \cdot(y \cdot z)=(x \cdot y) \cdot z)
\end{aligned}
$$

What about Types

Ordinary first-order formulae are interpreted over a single domain of discourse (the universe).
A variant of first-order logic, called many-sorted (or typed) first-order logic, allows variables of different sorts (which correspond to partitions of the universe).
When the number of sorts is finite, one can emulate sorts by introducing additional unary predicates in the ordinary first-order logic.
Suppose there are two sorts.
We introduce two new unary predicates P_{1} and P_{2}.

* We then stipulate that
$\forall x\left(P_{1}(x) \vee P_{2}(x)\right) \wedge \neg\left(\exists x\left(P_{1}(x) \wedge P_{2}(x)\right)\right)$.
For example, $\exists x\left(P_{1}(x) \wedge \varphi(x)\right)$ means that there is an element of the first sort satisfying $\varphi ; \forall x\left(P_{1}(x) \rightarrow \psi(x)\right)$ means that every element of the first sort satisfies ψ.

Free and Bound Variables

In a formula $\forall x A$ (or $\exists x A$), the variable x is bound by the quantifier \forall (or \exists).
-
A free variable is one that is not bound.

- The same variable may have both a free and a bound occurrence.
- For example, consider
$(\forall x(R(x, \underline{y}) \rightarrow P(x)) \wedge \forall y(\neg R(\underline{x}, y) \wedge \forall x P(x)))$.
The underlined occurrences of x and y are free, while others are bound.
A formula is closed, also called a sentence, if it does not contain a free variable.

Substitutions

Let t be a term (such as $x, g(x, y)$, etc.) and A a formula.

- The result of substituting t for a free variable x in A is denoted by $A[t / x]$.
Consider $A=\forall x(P(x) \rightarrow Q(x, f(y)))$. When $t=g(y), A[t / y]=\forall x(P(x) \rightarrow Q(x, f(g(y))))$.

For any $t, A[t / x]=\forall x(P(x) \rightarrow Q(x, f(y)))=A$, since there is no free occurrence of x in A.
A substitution is admissible if no free variable of t would become bound (be captured by a quantifier) after the substitution.
For example, when $t=g(x, y), A[t / y]$ is not admissible, as the free variable x of t would become bound.

Quantifier Rules of Natural Deduction

$$
\begin{gather*}
\frac{\Gamma \vdash A[y / x]}{\Gamma \vdash \forall x A}(\forall I) \\
\frac{\Gamma \vdash A[t / x]}{\Gamma \vdash \exists x A}(\exists I) \\
\frac{\Gamma \vdash \forall x A}{\Gamma \vdash A[t / x]}(\forall E) \\
\Gamma \vdash \exists x A \quad \Gamma, A[y / x] \vdash B \\
\Gamma \vdash B
\end{gather*}
$$

In the rules above, we assume that all substitutions are admissible and y does not occur free in Γ or A.

A Proof in First-Order ND

Below is a partial proof of the validity of $\forall x(\neg p(x) \vee \neg q(x)) \wedge \forall x(r(x) \rightarrow q(x)) \rightarrow \forall x(p(x) \rightarrow \neg r(x))$ in $N D$, where γ denotes $\forall x(\neg p(x) \vee \neg q(x)) \wedge \forall x(r(x) \rightarrow q(x))$.

$$
\begin{align*}
& \overline{\gamma, p(y), r(y) \vdash r(y) \rightarrow q(y)} \overline{\gamma, p(y), r(y) \vdash r(y)}(A x) \\
& \frac{\gamma x, p(y), r(y) \vdash q(y)}{\forall x(\neg p(x) \vee \neg q(x)) \wedge \forall x(r(x) \rightarrow q(x)), p(y), r(y) \vdash q(y) \wedge \neg q(y)}(\wedge I) \\
& \frac{\forall x(\neg p(x) \vee \neg q(x)) \wedge \forall x(r(x) \rightarrow q(x)), p(y) \vdash \neg r(y)}{\forall x(\neg p(x) \vee \neg q(x)) \wedge \forall x(r(x) \rightarrow q(x)) \vdash p(y) \rightarrow \neg r(y)}(\rightarrow I) \\
& \frac{\forall x(\neg p(x) \vee \neg q(x)) \wedge \forall x(r(x) \rightarrow q(x)) \vdash \forall x(p(x) \rightarrow \neg r(x))}{\vdash \forall x(\neg p(x) \vee \neg q(x)) \wedge \forall x(r(x) \rightarrow q(x)) \rightarrow \forall x(p(x) \rightarrow \neg r(x))}(\rightarrow I)
\end{align*}
$$

Equality Rules of Natural Deduction

Let t, t_{1}, t_{2} be arbitrary terms; again, assume all substitutions are admissible.

$$
\begin{aligned}
& \overline{\Gamma \vdash t=t}(=I) \\
& \frac{\Gamma \vdash t_{1}=t_{2} \quad \Gamma \vdash A\left[t_{1} / x\right]}{\Gamma \vdash A\left[t_{2} / x\right]}(=E)
\end{aligned}
$$

Note: The $=$ sign is part of the object language, not a meta symbol.

Theory

- Assume a fixed first-order language.

A set S of sentences is closed under provability if

$$
S=\{A \mid A \text { is a sentence and } S \vdash A \text { is provable }\} .
$$

A set of sentences is called a theory if it is closed under provability.
A theory is typically represented by a smaller set of sentences, called its axioms.

Note: a sentence is a formula without free variables. For example, $\forall x(x \geq 0)$ is a sentence, but $x \geq 0$ is not.

Group as a First-Order Theory

The set of non-logical symbols is $\{\cdot, e\}$, where \cdot is a binary function (operation) and e is a constant (the identity).

- Axioms:
$\forall a, b, c(a \cdot(b \cdot c)=(a \cdot b) \cdot c)$
*) $\forall a(a \cdot e=e \cdot a=a)$
, $\forall a(\exists b(a \cdot b=b \cdot a=e))$
(Associativity) (Identity)
(Inverse)
$(Z,\{+, 0\})$ is a model of the theory.
So is $(Q \backslash\{0\},\{\times, 1\})$.
- Additional axiom for Abelian groups:

潮 $\forall a, b(a \cdot b=b \cdot a)$
(Commutativity)

Theorems

A theorem is just a statement (sentence) in a theory (a set of sentences).
For example, the following are theorems in Group theory:
, $\forall a \forall b \forall c((a \cdot b=a \cdot c) \rightarrow b=c)$.
$\forall a \forall b \forall c(((a \cdot b=e) \wedge(b \cdot a=e) \wedge(a \cdot c=e) \wedge(c \cdot a=e)) \rightarrow b=c)$, which says that every element has a unique inverse.

