
Software Verification:
Hoare Logic and Predicate Transformers

(Based on [Apt and Olderog 1991; Dijkstra 1976;
Gries 1981; Hoare 1969; Kleymann 1999; Sethi 1996])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 1 / 49



An Axiomatic View of Programs

The properties of a program can, in principle, be found out from
its text by means of purely deductive reasoning.

The deductive reasoning involves the application of valid
inference rules to a set of valid axioms.

The choice of axioms will depend on the choice of programming
languages.

We shall introduce such an axiomatic approach, called the Hoare
logic, to program correctness.

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 2 / 49



Assertions

When executed, a program will evolve through different states,
which are essentially a mapping of the program variables to
values in their respective domains.

To reason about correctness of a program, we inevitably need to
talk about its states.

An assertion is a precise statement about the state of a program.

Most interesting assertions can be expressed in a first-order
language.

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 3 / 49



Pre and Post-conditions

The behavior of a “structured” (single-entry/single-exit)
program statement can be characterized by attaching assertions
at the entry and the exit of the statement.

For a statement S , this is conveniently expressed as a so-called
Hoare triple, denoted {P} S {Q}, where

P is called the pre-condition and
Q is called the post-condition of S .

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 4 / 49



Interpretations of a Hoare Triple

A Hoare triple {P} S {Q} may be interpreted in two different
ways:

Partial Correctness: if the execution of S starts in a state
satisfying P and terminates, then it results in a state satisfying
Q.
Total Correctness: if the execution of S starts in a state
satisfying P, then it will terminate and result in a state
satisfying Q.

Note: sometimes we write ⟨P⟩ S ⟨Q⟩ when total correctness is
intended.

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 5 / 49



Pre and Post-Conditions for Specification

Find an integer approximate to the square root of another
integer n:

{0 ≤ n} ? {d2 ≤ n < (d + 1)2}

or slightly better (clearer about what can be changed)

{0 ≤ n} d := ? {d2 ≤ n < (d + 1)2}

Find the index of value x in an array b:

{x ∈ b[0..n − 1]} ? {0 ≤ i < n ∧ x = b[i ]}
{0 ≤ n} ? {(0 ≤ i < n ∧ x = b[i ]) ∨ (i = n ∧ x ̸∈ b[0..n − 1])}

Note: there are other ways to stipulate which variables are to be
changed and which are not.

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 6 / 49



A Little Bit of History

The following seminal paper started it all:
C.A.R. Hoare. An axiomatic basis for computer programs.
CACM, 12(8):576-580, 1969.

Original notation: P {S} Q (vs. {P} S {Q})
Interpretation: partial correctness

Provided axioms and proof rules

Note: R.W. Floyd did something similar for flowcharts earlier in 1967,
which was also a precursor of “proof outline” (a program fully
annotated with assertions).

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 7 / 49



The Assignment Statement

Syntax:
x := E

Meaning: execution of the assignment x := E (read as “x
becomes E”) evaluates E and stores the result in variable x .

We will assume that expression E in x := E has no side-effect
(i.e., does not change the value of any variable).

Which of the following two Hoare triples is correct about the
assignment x := E?

{P} x := E {P[E/x ]}
{Q[E/x ]} x := E {Q}

Note: E is essentially a first-order term.

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 8 / 49



Some Hoare Triples for Assignments

{x > 0} x := x − 1 {x ≥ 0}
or equivalently, {x − 1 ≥ 0} x := x − 1 {x ≥ 0}
{x + 1 > 5} x := x + 1 {x > 5}
{5 ̸= 5} x := 5 {x ̸= 5}

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 9 / 49



Axiom of the Assignment Statement

(Assignment)
{Q[E/x ]} x := E {Q}

Why is this so?

Let s be the state before x := E and s ′ the state after.

So, s ′ = s[x := E ] assuming E has no side-effect.

Q[E/x ] holds in s if and only if Q holds in s ′, because

every variable, except x , in Q[E/x ] and Q has the same value
in s and s ′, and
Q[E/x ] has every x in Q replaced by E , while Q has every x
evaluated to E in s ′ (= s[x := E ]).

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 10 / 49



The Multiple Assignment Statement

Syntax:
x1, x2, · · · , xn := E1,E2, · · · ,En

where xi ’s are distinct variables.

Meaning: execution of the multiple assignment evaluates all Ei ’s
and stores the results in the corresponding variables xi ’s.

Examples:

i , j := 0, 0 (initialize i and j to 0)
x , y := y , x (swap x and y)
g , p := g + 1, p − 1 (increment g by 1, while decrement p by 1)
i , x := i + 1, x + i (increment i by 1 and x by i)

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 11 / 49



Some Hoare Triples for Multi-assignments

Swapping two values
{x < y} x , y := y , x {y < x}
Number of games in a tournament
{g + p = n} g , p := g + 1, p − 1 {g + p = n}
Taking a sum
{x + i = 1 + 2 + · · ·+ (i + 1− 1)}
i , x := i + 1, x + i
{x = 1 + 2 + · · ·+ (i − 1)}

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 12 / 49



Simultaneous Substitution

P[E/x ] can be naturally extended to allow E to be a list
E1,E2, · · · ,En and x to be x1, x2, · · · , xn, all of which are
distinct variables.

P[E/x ] is then the result of simultaneously replaying
x1, x2, · · · , xn with the corresponding expressions E1,E2, · · · ,En;
enclose Ei ’s in parentheses if necessary.

Examples:

(x < y)[y , x/x , y ] = (y < x)
(g + p = n)[g + 1, p − 1/g , p] = ((g + 1) + (p − 1) = n) =
(g + p = n)
(x = 1 + 2 + · · ·+ (i − 1))[i + 1, x + i/i , x ]
= ((x + i) = 1 + 2 + · · ·+ ((i + 1)− 1))
= (x + i = 1 + 2 + · · ·+ ((i + 1)− 1))

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 13 / 49



Axiom of the Multiple Assignment

Syntax:
x1, x2, · · · , xn := E1,E2, · · · ,En

where xi ’s are distinct variables.

Axiom:

(Assign.)
{Q[E1, · · · ,En/x1, · · · , xn]} x1, · · · , xn := E1, · · · ,En {Q}

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 14 / 49



Assignment to an Array Entry

Syntax:
b[i ] := E

Notation for an altered array: (b; i : E ) denotes the array that is
identical to b, except that entry i stores the value of E .

(b; i : E )[j ] =

{
E if i = j
b[j ] if i ̸= j

Axiom:

(Assignment)
{Q[(b; i : E )/b]} b[i ] := E {Q}

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 15 / 49



Pre and Post-condition of a Loop

A precondition just before a loop can capture the conditions for
executing the loop.

An assertion just within a loop body can capture the conditions
for staying in the loop.

A postcondition just after a loop can capture the conditions
upon leaving the loop.

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 16 / 49



A Simple Example

{x ≥ 0 ∧ y > 0}
while x ≥ y do

{x ≥ 0 ∧ y > 0 ∧ x ≥ y}
x := x − y

od
{x ≥ 0 ∧ y > 0 ∧ x ̸≥ y}
// or
{x ≥ 0 ∧ y > 0 ∧ x < y}

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 17 / 49



More about the Example

We can say more about the program.

// may assume x , y := m, n here for some m ≥ 0 and n > 0
{x ≥ 0 ∧ y > 0 ∧ (x ≡ m (mod y))}
while x ≥ y do

x := x − y
od
{x ≥ 0 ∧ y > 0 ∧ (x ≡ m (mod y)) ∧ x < y}

Note: repeated subtraction is a way to implement the integer
division. So, the program is taking the residue of x divided by y .

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 18 / 49



A Simple Programming Language

To study inference rules of Hoare logic, we consider a simple
programming language with the following syntax for statements:

S ::= skip
| x := E
| S1; S2

| if B then S fi
| if B then S1 else S2 fi
| while B do S od

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 19 / 49



Proof Rules

{Q[E/x ]} x := E {Q} (Assignment)

{P} skip {P} (Skip)

{P} S1 {Q} {Q} S2 {R}
{P} S1; S2 {R}

(Sequence)

{P ∧ B} S1 {Q} {P ∧ ¬B} S2 {Q}
{P} if B then S1 else S2 fi {Q}

(Conditional)

“if B then S fi” can be treated as “if B then S else skip fi” or
directly with the following rule:

{P ∧ B} S {Q} P ∧ ¬B → Q

{P} if B then S fi {Q}
(If-Then)

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 20 / 49



Proof Rules (cont.)

{P ∧ B} S {P}
{P} while B do S od {P ∧ ¬B}

(While)

P → P ′ {P ′} S {Q ′} Q ′ → Q

{P} S {Q}
(Consequence)

Note: with a suitable notion of validity, the set of proof rules up to
now can be shown to be sound and (relatively) complete for
programs that use only the considered constructs.

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 21 / 49



Some Auxiliary Rules

P → P ′ {P ′} S {Q}
{P} S {Q}

(Strengthening Precondition)

{P} S {Q ′} Q ′ → Q

{P} S {Q}
(Weakening Postcondition)

{P1} S {Q1} {P2} S {Q2}
{P1 ∧ P2} S {Q1 ∧ Q2}

(Conjunction)

{P1} S {Q1} {P2} S {Q2}
{P1 ∨ P2} S {Q1 ∨ Q2}

(Disjunction)

Note: these rules provide more convenience, but do not actually add
deductive power.

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 22 / 49



Invariants

An invariant at some point of a program is an assertion that
holds whenever execution of the program reaches that point.

Assertion P in the rule for a while loop is called a loop invariant
of the while loop.

An assertion is called an invariant of an operation (a segment of
code) if, assumed true before execution of the operation, the
assertion remains true after execution of the operation.

Invariants are a bridge between the static text of a program and
its dynamic computation.

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 23 / 49



Program Annotation

Inserting assertions/invariants in a program as comments helps
understanding of the program.

{x ≥ 0 ∧ y > 0 ∧ (x ≡ m (mod y))}
while x ≥ y do

{x ≥ 0 ∧ y > 0 ∧ x ≥ y ∧ (x ≡ m (mod y))}
x := x − y
{y > 0 ∧ x ≥ 0 ∧ (x ≡ m (mod y))}

od
{x ≥ 0 ∧ y > 0 ∧ (x ≡ m (mod y)) ∧ x < y}
A correct annotation of a program can be seen as a partial proof
outline for the program.

Boolean assertions can also be used as an aid to program testing.

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 24 / 49



An Annotated Program

{x ≥ 0 ∧ y ≥ 0 ∧ gcd(x , y) = gcd(m, n)}
while x ̸= 0 and y ̸= 0 do

{x ≥ 0 ∧ y ≥ 0 ∧ gcd(x , y) = gcd(m, n)}
if x < y then x , y := y , x fi;
{x ≥ y ∧ y ≥ 0 ∧ gcd(x , y) = gcd(m, n)}
x := x − y
{x ≥ 0 ∧ y ≥ 0 ∧ gcd(x , y) = gcd(m, n)}

od
{(x = 0 ∧ y ≥ 0 ∧ y = gcd(x , y) = gcd(m, n))∨
(x ≥ 0 ∧ y = 0 ∧ x = gcd(x , y) = gcd(m, n))}

Note: m and n are two arbitrary non-negative integers, at least one of

which is nonzero.

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 25 / 49



Total Correctness: Termination

All inference rules introduced so far, except the while rule, work
for total correctness.

Below is a rule for the total correctness of the while statement:

{P ∧ B} S {P} {P ∧ B ∧ t = Z} S {t < Z} P → (t ≥ 0)

{P} while B do S od {P ∧ ¬B}
where t is an integer-valued expression (state function) and Z is
a “rigid” variable that does not occur in P , B , t, or S .

The above function t is called a rank (or variant) function.

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 26 / 49



Termination of a Simple Program

g , p := 0, n; // n ≥ 1
while p ≥ 2 do

g , p := g + 1, p − 1
od

Loop Invariant: (g + p = n) ∧ (p ≥ 1)

Rank (Variant) Function: p

The loop terminates when p = 1 (p ≥ 1 ∧ p ̸≥ 2).

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 27 / 49



Well-Founded Sets

A binary relation ⪯ ⊆ A× A is a partial order if it is

reflexive: ∀x ∈ A(x ⪯ x),
transitive: ∀x , y , z ∈ A((x ⪯ y ∧ y ⪯ z) → x ⪯ z), and
antisymmetric: ∀x , y ∈ A((x ⪯ y ∧ y ⪯ x) → x = y).

A partially ordered set (W ,⪯) is well-founded if there is no
infinite decreasing chain x1 ≻ x2 ≻ x3 ≻ · · · of elements from
W . (Note: “x ≻ y” means “y ⪯ x ∧ y ̸= x”.)

Examples:

(Z≥0,≤)
(Z≥0 × Z≥0,≤),
where (x1, y1) ≤ (x2, y2) if (x1 < x2) ∨ (x1 = x2 ∧ y1 ≤ y2)

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 28 / 49



Termination by Well-Founded Induction

Below is a more general rule for the total correctness of the while
statement:

{P ∧ B} S {P} {P ∧ B ∧ δ = D} S {δ ≺ D} P → (δ ∈ W )

{P} while B do S od {P ∧ ¬B}

where (W ,⪯) is a well-founded set, δ is a state function, and D is a
“rigid” variable ranged over W that does not occur in P , B , δ, or S .

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 29 / 49



Nondeterminism

Syntax of the Alternative Statement:

if B1 → S1

[] B2 → S2

· · ·
[] Bn → Sn

fi

Each of the “Bi → Si”s is called a guarded command, where Bi

is the guard of the command and Si the body.

Semantic:

1. One of the guarded commands, whose guard evaluates to true,
is nondeterministically selected and its body executed.

2. If none of the guards evaluates to true, then the execution
aborts.

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 30 / 49



Rule for the Alternative Statement

The Alternative Statement:

if B1 → S1

[] B2 → S2

· · ·
[] Bn → Sn

fi

Inference rule:

P → B1 ∨ · · · ∨ Bn {P ∧ Bi} Si {Q}, for 1 ≤ i ≤ n

{P} if B1 → S1[] · · · [] Bn → Sn fi {Q}

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 31 / 49



The Coffee Can Problem as a Program

B ,W := m, n; // m > 0 ∧ n > 0
while B +W ≥ 2 do

if B ≥ 0 ∧W > 1 → B ,W := B + 1,W − 2 // same color
[] B > 1 ∧W ≥ 0 → B ,W := B − 1,W // same color
[] B > 0 ∧W > 0 → B ,W := B − 1,W // different colors
fi

od

Loop Invariant: W ≡ n (mod 2) (and B +W ≥ 1)

Variant (Rank) Function: B +W

The loop terminates when B +W = 1.

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 32 / 49



Predicate Transformers: Basic Idea

The execution of a sequential program, if terminating,
transforms the initial state into some final state.

If, for any given postcondition, we know
the weakest precondition that guarantees termination of the
program in a state satisfying the postcondition,

then we have fully understood the meaning of the program.

Note: the weakest precondition is the weakest in the sense that it
identifies all the desired initial states and nothing else.

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 33 / 49



The Predicate Transformer wp

For a program S and a predicate (or an assertion) Q, let
wp(S ,Q) denote the aformentioned weakest precondition.

Therefore, we can see a program as a predicate transformer
wp(S , ·), transforming a postcondition Q (a predicate) into its
weakest precondition wp(S ,Q).

If the execution of S starts in a state satisfying wp(S ,Q), it is
guaranteed to terminate and result in a state satisfying Q.

Note: there is a weaker variant of wp, called wlp (weakest liberal
precondition), which is defined almost identical to wp except that
termination is not guaranteed.

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 34 / 49



Hoare Triples in Terms of wp

When total correctness is meant, {P} S {Q} can be understood
as saying P ⇒ wp(S ,Q).

In fact, with a suitable formal definition, wp provides a semantic
foundation for the Hoare logic.

The precondition P here may be as weak as wp(S ,Q), but often
a stronger and easier-to-find P is all that is needed.

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 35 / 49



Properties of wp

Fundamental Properties (Axioms):

Law of the Excluded Miracle: wp(S , false) ≡ false

Distributivity of Conjunction:
wp(S ,Q1) ∧ wp(S ,Q2) ≡ wp(S ,Q1 ∧ Q2)

Distributivity of Disjunction for deterministic S :
wp(S ,Q1) ∨ wp(S ,Q2) ≡ wp(S ,Q1 ∨ Q2)

Derived Properties:

Law of Monotonicity: if Q1 ⇒ Q2, then
wp(S ,Q1) ⇒ wp(S ,Q2)

Distributivity of Disjunction for nondeterministic S :
wp(S ,Q1) ∨ wp(S ,Q2) ⇒ wp(S ,Q1 ∨ Q2)

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 36 / 49



Predicate Calculation

Equivalence is preserved by substituting equals for equals

Example:
(A ∨ B) → C

≡ { A → B ≡ ¬A ∨ B }
¬(A ∨ B) ∨ C

≡ { de Morgan’s law }
(¬A ∧ ¬B) ∨ C

≡ { distributive law }
(¬A ∨ C ) ∧ (¬B ∨ C )

≡ { A → B ≡ ¬A ∨ B }
(A → C ) ∧ (B → C )

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 37 / 49



Predicate Calculation (cont.)

Entailment distributes over conjunction, disjunction,
quantification, and the consequence of an implication.

Example:
∀x(A → B) ∧ ∀xA

⇒ { ∀x(A → B) ⇒ (∀xA → ∀xB) }
(∀xA → ∀xB) ∧ ∀xA

≡ (¬∀xA ∨ ∀xB) ∧ ∀xA
≡ (¬∀xA ∧ ∀xA) ∨ (∀xB ∧ ∀xA)
≡ { ¬A ∧ A ≡ false }

false ∨ (∀xB ∧ ∀xA)
≡ { false ∨ A ≡ A }

∀xB ∧ ∀xA
⇒ ∀xB

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 38 / 49



Some Laws for Predicate Calculation

Equivalence is commutative and associative

A ↔ B ≡ B ↔ A
A ↔ (B ↔ C ) ≡ (A ↔ B) ↔ C

false ∨ A ≡ A ∨ false ≡ A

¬A ∧ A ≡ false

A → B ≡ ¬A ∨ B

A → false ≡ ¬A
(A ∨ B) → C ≡ (A → C ) ∧ (B → C )

A → (B → C ) ≡ (A ∧ B) → C

A → B ≡ A ↔ (A ∧ B)

A ∧ B ⇒ A

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 39 / 49



Some Laws for Predicate Calculation (cont.)

∀x(x = E → A) ≡ A[E/x ] ≡ ∃x(x = E ∧ A), if x is not
free in E .

∀x(A ∧ B) ≡ ∀xA ∧ ∀xB
∀x(A → B) ⇒ ∀xA → ∀xB
∀x(A → B) ≡ A → ∀xB , if x is not free in A.

∃x(A ∧ B) ≡ A ∧ ∃xB , if x is not free in A.

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 40 / 49



“Extreme” Programs

wp(skip,Q)
∆
= Q

wp(choose x , x ∈ Dom(x))
∆
= true

wp(choose x ,Q)
∆
= Q, if x is not free in Q

wp(abort,Q)
∆
= false

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 41 / 49



The Assignment Statement

Syntax: x := E
Note: this becomes a multiple assignment, if we view x as a list
of distinct variables and E as a list of expressions.

Semantics: wp(x := E ,Q)
∆
= Q[E/x ].

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 42 / 49



Sequencing

Syntax: S1; S2

Semantics: wp(S1; S2,Q)
∆
= wp(S1,wp(S2,Q)).

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 43 / 49



The Alternative Statement

Syntax:

IF: if B1 → S1

[] B2 → S2

· · ·
[] Bn → Sn

fi

Semantics:

wp(IF,Q)
∆
= (∃i : 1 ≤ i ≤ n : Bi)

∧ (∀i : 1 ≤ i ≤ n : Bi → wp(Si ,Q))

The case of simple IF:

wp(if B → S fi,Q)
∆
= B ∧ (B → wp(S ,Q))

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 44 / 49



The Alternative Statement (cont.)

Suppose there exists a predicate P such that

1. P ⇒ (∃i : 1 ≤ i ≤ n : Bi) and

2. ∀i : 1 ≤ i ≤ n : P ∧ Bi ⇒ wp(Si ,Q).

Then P ⇒ wp(IF,Q).

Inference rule in the Hoare logic:

P ⇒ (∃i : 1 ≤ i ≤ n : Bi) ∀i : 1 ≤ i ≤ n : {P ∧ Bi} Si {Q}
{P} IF : if B1 → S1[] · · · [] Bn → Sn fi {Q}

The case of simple IF:

P ⇒ B {P ∧ B} S {Q}
{P} if B → S fi {Q}

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 45 / 49



The Iterative Statement

Syntax:

DO: do B1 → S1

[] B2 → S2

· · ·
[] Bn → Sn

od

Each of the “Bi → Si”s is a guarded command.

Informal description: Choose (nondeterministically) a guard Bi

that evaluates to true and execute the corresponding command
Si . If none of the guards evaluates to true, then the execution
terminates.

The usual “while B do S od” can be defined as this simple
while-loop: “do B → S od”.

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 46 / 49



The Iterative Statement (cont.)

Let BB denote ∃i : 1 ≤ i ≤ n : Bi , i.e., B1 ∨ B2 ∨ · · · ∨ Bn.

The DO statement is equivalent to

do BB → if B1 → S1

[] B2 → S2

· · ·
[] Bn → Sn

if
od

or simply do BB → IF od.

This suggests that we could have got by with just the simple
while-loop.

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 47 / 49



A Theorem for Simple DO

Suppose there exist a predicate P and an integer-valued expres-
sion t such that

1. P ∧ B ⇒ wp(S ,P),

2. P ⇒ (t ≥ 0), and

3. P ∧ B ∧ (t = t0) ⇒ wp(S , t < t0), where t0 is a rigid
variable.

Then P ⇒ wp(do B → S od,P ∧ ¬B).

This is to be contrasted by

{P ∧ B} S {P} {P ∧ B ∧ t = Z} S {t < Z} P ⇒ (t ≥ 0)

{P} while B do S od {P ∧ ¬B}

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 48 / 49



References

K.R. Apt and E.-R. Olderog. Verification of Sequential and
Concurrent Programs, Springer-Verlag, 1991.

E.W. Dijkstra. A Discipline of Programming, Prentice-Hall,
1976.

D. Gries. The Science of Programming, Springer-Verlag, 1981.

C.A.R. Hoare. An axiomatic basis for computer programming.
CACM, 12(10):576–583, 1969.

T. Kleymann. Hoare logic and auxiliary variables. Formal
Aspects of Computing, 11:541–566, 1999.

R. Sethi. Programming Languages: Concepts and Constructs,
2nd Ed., Addison-Wesley, 1996.

Yih-Kuen Tsay (IM.NTU) Software Verification: Hoare Logic and . . . SDM 2023 49 / 49


	Hoare Logic: Introduction
	Pre and Post-conditions
	Assignment
	Loop
	Proof Rules
	The Use of Invariants
	Total Correctness
	Nondeterminism
	Predicate Transformers: Introduction
	Predicate Calculation
	Semantics in Terms of wp

