Software Development Methods [Compiled on April 26, 2023] Spring 2023

Homework Assignment #4:
Exercises on Design Patterns

Due Time/Date

2:00PM Wednesday, May 3, 2023. Late submission will be penalized by 20% for each working
day overdue.

How to Submit

Please use a word processor or scan hand-written answers to produce a single PDF file. Name
your file according to this pattern: “r117250xx-hw4”. Add the PDF file to your remote indi-
vidual repository on the Git server for this course. The remote repository should be named
“hw4”.

Problems

1. Suppose you are working on an audio processor class. The class has the following method
that compresses audio files in parallel using multiple threads:

1 |using namespace std;

2 |void AudioProcessor :: ParallelCompress (

3 const vector<AudioFile>& files ,

4 int nThreads) {

5 vector<unique_ptr<aos:: Thread>> threads(
6 nThreads);

7 // Creates a aos:: MutexLock instance.

8 unique_ptr<aos :: MutexLock> lock (

9 new aos :: MutexLock ());

10

11 int fIndex = files .size ();

12 for (int i = 0; i < nThreads; ++i) {

13 // Create a aos::Thread instance.

14 threads[i].reset (new aos::Thread());

15 // Run the lambda on a thread.

16 threads [i]—>Start ([&](){

17 while (true) {

18 // Get an unprocessed AudioFile instance.
19 lock—>Lock ();

20 if (fIndex = files.size()) {

21 // Returning from the lambda will
22 // terminate the thread.

23 return;

24 }

25 const auto& file = files [fIndex++];
26 lock-—>Unlock ();

27

28 // Compress the AudioFile instance.

29 DoCompress(file);
30 }

31 IDF

32 }

33

34 // Wait until all threads

35 for (auto& thread threads) {
36 thread—>Join ();

37|)

38 |}

are terminated.

Now you are supporting a new platform named bsystem that provides the bsystem::BThread
and bsystem::BMutex classes for manipulating threads and mutexes. Here is the class di-

agram of the threading classes:

Abstractvutex AbstractThread

+Tock() + S

+ Unlock()
aos--MutexLock bsystem::BMutex | |aos::Thread bsystem::BThread
+ Lock() +Lock() + Start() + Start()
+ Unlock() + Unlock() + Join() + Join()

(a) (15 %) What design pattern can you use in method AudioProcessor::ParallelCompress|()

for instantiating the threading classes of aos and bsystem without depending on the
concrete classes in the method?

(b) (25 %) Please provide the class diagram of the design and also show the reimple-
mented method in c++.

2. Now you are supporting another platform, cplatform, that provides the following threading

classes:

cplaform::NativeThread

+ Run()
+ WaitForTermination()

cplatform::Mutex

+ Acquire()
+ Release()

It can be seen that the cplatform threading classes provide similar functions with an
incompatible interface. You need extra work to make the method support cplatform.

(a) (15 %) Which design pattern can you use to make AudioProcessor::ParallelCompress()
use the cplatform classes without depending on its interface?

(b) (15 %) Please provide the design in a class diagram.

3. The capability of running computation-intensive workloads on separate threads is useful
not only for audio compression but also for other audio processing functions like removing
background noise, echo cancellation, speech recognition, etc. You renamed the method
and parameterized it with an AbstractProcessor argument:

1 |using namespace std;

2 |void AudioProcessor:: ParallelProcess(

3 const vector<AudioFile>& files ,

4 int nThreads,

5 AbstractProcessor* processor) {

6 vector<unique_ptr<aos :: Thread>> threads(
7 nThreads);

8 // Create a aos::MutexLock instance.

9 unique_ptr<aos :: MutexLock> lock (

10 new aos :: MutexLock ());

11

12 int fIndex = files .size ();

13 for (int i = 0; i < nThreads; ++i) {

14 // Create a aos::Thread instance.

15 threads[i].reset (new aos::Thread());

16

17 // Run the lambda on a thread.

18 threads[i]—>Start ([&](){

19 while (true) {

20 // Get an unprocessed AudioFile instance.
21 lock—>Lock ();

22 if (fIndex = files.size()) {

23 // Returning from the lambda will
24 // terminate the thread.

25 return;

26 }

27 const auto& file = files [fIndex++];
28 lock—=>Unlock ();

29

30 // Run the processor with the AudioFile
31 //instance.

32 processor—>Run(file);

33 }

34 1)

35|)

36

37 // Wait until all threads are terminated.
38 for (auto& thread : threads) {

39 thread—Join ();

40 }

41 |}

The original AudioProcessor::DoCompress() method is moved into AudioCompress::Run():

AbstractProcessor
+ Run()

AudioCompressor
+ Run()

Code moved from 1

AudioProcessor::DoCompress()

(a) (15 %) Which pattern is used to refactor the design to make it support generic
processor implementations?

(b) (15 %) Please add the support of EchoCancellation in a class diagram.

