
Software Development Methods [January 18, 2007] Fall 2006

Final

Note

This is an open-book exam. You may consult any books, papers, or notes, but discussion

is strictly forbidden.

Problems

1. Please answer the following questions.

(a) The Iterator pattern is implemented by C++ templates in the textbook.

Please give one advantage and one disadvantage of the template implemen-

tation. (10 %)

(b) Consider the FilteringListTraverser template.

template <class Item>

class FilteringListTraverser {

public:

FilteringListTrverser (List<Item> *aList);

bool Traverse ();

protected:

virtual bool ProcessItem (const Item &) = 0;

virtual bool TestItem (const Item &) = 0;

private:

ListIterator<Item> _iterator;

};

Please write a C++ pseudo code to print all even numbers in an integer list up

to the first 0. For instance, if the list 1, 4, -3, -8, 2, 0, -5, 6 is given,

your code should print 4 -8 2 0. (5 %)

2. In a secure system, user identifiers and their passwords should be kept separately

and consistently. That is, when one is modified by administrators, the other must

be changed properly. You are going to design a system to make sure the consistency

of both by the Mediator pattern. Please answer the following questions in pseudo

C++ or Java code.

1

(a) Please write an abstract base class for lists. (5 %)

(b) Please write interfaces for UserIdList and PasswordList. (5 %)

(c) Please implement your system class SecureSystem as the director in the Me-

diator pattern. (5 %)

3. Prove the following by Natural Deduction:

(a) From “Γ, A,B,C ` D”, one can deduce “Γ, A ∧B ∧ C ` D”. (5 %)

(b) Γ, s = t ` t = s (Symmetry of Equality) (5 %)

(c) Γ, s = t, t = r ` s = r (Transitivity of Equality) (5 %)

4. This problem refers to the Class Diagram Example in Chapter 7 of the UML 2.0

OCL Specification, shown below.

 UML OCL2 Specification 23

Figure 1 - Class Diagram Example

7.3 Relation to the UML Metamodel

7.3.1 Self

Each OCL expression is written in the context of an instance of a specific type. In an OCL expression, the reserved word self is

used to refer to the contextual instance. For instance, if the context is Company, then self refers to an instance of Company.

7.3.2 Specifying the UML context

The context of an OCL expression within a UML model can be specified through a so-called context declaration at the

beginning of an OCL expression. The context declaration of the constraints in the following sections is shown.

If the constraint is shown in a diagram, with the proper stereotype and the dashed lines to connect it to its contextual element,

there is no need for an explicit context declaration in the test of the constraint. The context declaration is optional.

7.3.3 Invariants

The OCL expression can be part of an Invariant which is a Constraint stereotyped as an «invariant». When the invariant is

associated with a Classifier, the latter is referred to as a “type” in this chapter. An OCL expression is an invariant of the type and

must be true for all instances of that type at any time. (Note that all OCL expressions that express invariants are of the type

Boolean.)

For example, if in the context of the Company type in Figure 1, the following expression would specify an invariant that the

Write an OCL specification for each of the following requirement descriptions.

Please make assumptions wherever necessary.

2

(a) A marriage must be between two people of age at least 18 from January 1,

2007. (5 %)

(b) Any company with 5 employees or more must hire a female employee. (5 %)

(c) The (annual) income of a person (counted on a particular date) should be the

sum of all salaries from the person’s jobs (on that particular date). (5 %)

5. For each of the following ω-regular expressions, draw an equivalent Büchi automa-

ton.

(a) b∗(aa)ω + a∗(bb)ω (5 %)

(b) (a + b)∗(aa + bb)ω (5 %)

6. For each of the following temporal formulae, draw an equivalent Büchi automaton,

assuming the alphabet is {pq,p~q,~pq,~p~q}.

(a) 3p ∧3q (10 %)

(b) 32p → 23q (10 %)

7. Consider the Promela code below. Please give a temporal formula and the defini-

tions of relevant propositions for proving its liveness property, namely any user that

is trying to enter the critical section will eventually succeed. (10 %)

mtype { p , v };

chan sema = [0] of {mtype};

active proctype Dijkstra()

{ byte count = 1;

end:

do

:: (count==1) -> sema!p; count = 0

:: (count==0) -> sema?v; count = 1

od

}

active [3] proctype user()

{ do

3

::

try:

sema?p; /* enter */

critical: skip; /* leave */

sema!v;

od

}

4

