Midterm: Part Two

Note

This is an open-book exam. You may consult any books, papers, or notes, but discussion with others is strictly forbidden.

Problems

1. (20%) Prove the following sequents using Natural Deduction (in the sequent form). You may assume $\Gamma \vdash A \vee \neg A$ to be an axiom (the Law of Excluded Middle) if it makes the proof simpler and shorter.
(a) $(A \rightarrow C) \vee(B \rightarrow C) \vdash A \wedge B \rightarrow C$
(b) $\neg A \vee \neg B \vdash \neg(A \wedge B)$
2. The following program computes the square of n and stores it in y.

$$
\begin{aligned}
& x:=n ; \\
& y:=0 ; \\
& \text { while } x>0 \text { do } \\
& \quad x, y:=x-1, y+2 x-1 \\
& \text { od }
\end{aligned}
$$

(a) (5%) State the correctness requirement for the program.
(b) (15%) Prove that the program indeed satisfies the requirement.
3. (30%) You have been assigned to design a computerized course enrollment system for a university. Among other things, you have managed to gather the following requirements:
(a) A student can be uniquely identified by her student ID.
(b) A course can be uniquely identified by its course ID and the year and semester when it is offered.
(c) Two courses must not be taken by a student at the same time if they have a time conflict.
(d) No student should take more than 25 credit hours of courses in a semester.
(e) Some courses may have prerequisite courses, so to take the course, a student must have taken and passed the prerequisite courses.

Now the next step should be to make all the above more precise for the design by drawing a UML class diagram and adding OCL constraints (in the diagram). Please carry out this step as thoroughly as possible; make assumptions wherever necessary.

