Alloy
 (Based on [Daniel Jackson 2006] and Alloy MIT Website)

Jen-Feng Shih

SVVRL
Dept. of Information Management
National Taiwan University
December 10, 2009

Outline

(1) About Alloy

(3) Language
(4) Analysis

What is Alloy

Alloy is a structural modelling language based on first-order logic, for expressing complex structural constraints and behaviour.
The Alloy Analyzer is a constraint solver that provides fully automatic simulation and checking.
Developed by the Software Design Group at MIT.

How is Alloy Related to Z and OCL

Alloy can be viewed as a subset of Z.
Unlike Z, Alloy is first order, which makes it analyzable (but also less expressive).
Alloy is a pure ASCII notation and doesn't require special typesetting tools.
Alloy is similar to OCL, the Object Language of UML, but it has a more conventional syntax and a simpler semantics, and is designed for automatic analysis.

Alloy $=$ Logic + Language + Analysis

- Logic
first order logic + relational calculus
Language
e. syntax for structuring specifications in the logic
- Analysis
\% bounded exhaustive search for counterexample to a claimed property using SAT

Example

A birthday book...
数 Associates birthday with shorter names that are more convenient to use.
alias: a nickname.
group: an entire set of friends.

Outline

(1) About Alloy

(2) Logic
(3) Language

4 Analysis

Three Logics in One

- Predicate calculus style

Relation names are used as predicates and tuples formed from quantified variables.
all n : Name, d, d ': Date
$\mathrm{n} \rightarrow \mathrm{d}$ in birthday and $\mathrm{n}->\mathrm{d}^{\prime}$ in birthday implies $\mathrm{d}=\mathrm{d}$ '

- Navigation expression style (the most expressive)

Expressions denote sets, which are formed by "navigating" from quantified variables along relations.
all n : Name | lone n .birthday

- Relational calculus style

Expressions denote relations, and there are no quantifiers at all.
no ~birthday.birthday - iden

Atoms and Relations

- Atoms are Alloy's primitive entities
e indivisible, immutable, uninterpreted
Relations associate atoms with one another
* consists of a set of tuples, each tuple being a sequence of atoms
is all relations are first-order, relations cannot contain relations
Every value in Alloy logic is a relation
番 relations, sets, scalars all the same thing

Everything Is a Relation

Sets are unary relations
Name $=\{(\mathrm{N} 0),(\mathrm{N} 1),(\mathrm{N} 2)\}$
Date $=\{(\mathrm{D} 0),(\mathrm{D} 1),(\mathrm{D} 2)\}$
Book $=\{(\mathrm{B} 0),(\mathrm{B} 1)\}$
Scalars are singleton sets (unary relation with only one tuple)
myName $=\{(\mathrm{N} 0)\}$
yourName $=\{(\mathrm{N} 2)\}$
myBook $=\{(\mathrm{B} 0)\}$
Binary relation
name $=\{(\mathrm{B} 0, \mathrm{~N} 0),(\mathrm{B} 1, \mathrm{~N} 0),(\mathrm{B} 2, \mathrm{~N} 2)\}$

- Ternary relation

$$
\begin{aligned}
\text { birthdays }= & \{(\mathrm{B} 0, \mathrm{~N} 0, \mathrm{D} 0),(\mathrm{B} 0, \mathrm{~N} 1, \mathrm{D} 1) \\
& (\mathrm{B} 1, \mathrm{~N} 1, \mathrm{D} 2),(\mathrm{B} 1, \mathrm{~N} 2, \mathrm{D} 2)\}
\end{aligned}
$$

Constants

none empty set
univ universal set
iden identity

```
Example
Name = {(N0), (N1), (N2)}
Date ={(D0), (D1)}
none ={}
univ ={(N0), (N1), (N2), (D0), (D1)}
iden = {(N0, N0), (N1, N1), (N2, N2), (D0, D0), (D1, D1)}
```


Set Operators

+ union
\& intersection
- difference
in subset
$=$ equality

Example

Name $=\{(\mathrm{N} 0),(\mathrm{N} 1),(\mathrm{N} 2)\}$
Alias $=\{(\mathrm{N} 1),(\mathrm{N} 2)\}$
Group $=\{(\mathrm{N} 0)\}$
RecentlyUsed $=\{(\mathrm{NO}),(\mathrm{N} 2)\}$
Alias + Group $=\{(\mathrm{NO}),(\mathrm{N} 1),(\mathrm{N} 2)\}$
Alias \& RecentlyUsed $=\{(\mathrm{N} 2)\}$
Name - RecentlyUsed $=\{(\mathrm{N} 1)\}$
RecentlyUsed in Alias $=$ false
RecentlyUsed in Name = true
Name $=$ Group + Alias $=$ true

Product Operator

-> cross product

Example

Name $=\{(\mathrm{N} 0),(\mathrm{N} 1)\}$
Date $=\{(\mathrm{D} 0),(\mathrm{D} 1)\}$
Book $=\{(\mathrm{B} 0)\}$
Name->Date $=\{($ N0, D0) $,(N 0, D 1),(N 1, D 0),(N 1, D 1)\}$
Book->Name->Date $=$ $\{(\mathrm{B} 0, \mathrm{~N} 0, \mathrm{D} 0),(\mathrm{B} 0, \mathrm{~N} 0, \mathrm{D} 1),(\mathrm{B} 0, \mathrm{~N} 1, \mathrm{D} 0),(\mathrm{B} 0, \mathrm{~N} 1, \mathrm{D} 1)\}$

Relational Join

Join Operators

. dot join
[] box join

$$
\begin{aligned}
\mathrm{e} 1[\mathrm{e} 2] & =\mathrm{e} 2 . \mathrm{e} 1 \\
\mathrm{a} . \mathrm{b} \cdot \mathrm{c}[\mathrm{~d}] & =\mathrm{d} .(\mathrm{a} . \mathrm{b} \cdot \mathrm{c})
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { Book }=\{(\mathrm{B} 0)\} \text { myName }=\{(\mathrm{N} 1)\} \\
& \text { Name }=\{(\mathrm{N} 0),(\mathrm{N} 1),(\mathrm{N} 2)\} \text { myBirth }=\{(\mathrm{D} 0)\} \\
& \text { Date }=\{(\mathrm{D} 0),(\mathrm{D} 1),(\mathrm{D} 2)\} \\
& \text { birthday }=\{(\mathrm{B} 0, \mathrm{~N} 0, \mathrm{D} 0),(\mathrm{B} 0, \mathrm{~N} 1, \mathrm{D} 0),(\mathrm{B} 0, \mathrm{~N} 2, \mathrm{D} 2)\}
\end{aligned}
$$

Book. birthday $=\{($ N0, D0), (N1, D0), (N2, D2) $\}$
Book.birthday[myName] $=\{(\mathrm{D} 0)\}$
Book.birthday. $\mathrm{myName}=\{ \}$

Unary Operators

~ transpose

- transitive closure
* reflexive transitive closure

$$
\begin{aligned}
& { }^{\wedge} \mathrm{r}=\mathrm{r}+\mathrm{r} . \mathrm{r}+\mathrm{r} . \mathrm{r} . \mathrm{r}+\ldots \\
& * \mathrm{r}=\mathrm{iden}+{ }^{\wedge} \mathrm{r}
\end{aligned}
$$

Example

```
Node = {(N0), (N1), (N2), (N3)}
first ={(N0)} next ={(N0,N1),(N1,N2),(N2,N3)}
~next = {(N1,N0), (N2, N1), (N3,N2)}
`next = {(N0, N1), (N0, N2), (N0, N3),
    (N1,N2), (N1, N3), (N2,N3)}
*next = {(N0, N0), (N0, N1), (N0, N2), (N0, N3), (N1, N1),
    (N1, N2), (N1, N3), (N2, N2), (N2, N3), (N3, N3)}
first. `next = {(N1), (N2), (N3)}
first.*next = Node
```


Restriction and Override

<: domain restriction
:> range restriction
++ override

$$
\begin{aligned}
& \mathrm{p}++\mathrm{q}= \\
& \mathrm{p}-(\operatorname{domain}[\mathrm{q}]<: \mathrm{p})+\mathrm{q}
\end{aligned}
$$

Example

Name $=\{(\mathrm{N} 0),(\mathrm{N} 1),(\mathrm{N} 2)\}$
Alias $=\{(\mathrm{N} 0),(\mathrm{N} 1)\} \quad$ Date $=\{(\mathrm{D} 0)\}$
birthday $=\{(\mathrm{N} 0, \mathrm{~N} 1),(\mathrm{N} 1, \mathrm{~N} 2),(\mathrm{N} 2, \mathrm{D} 0)\}$
birthday :> Date $=\{(\mathrm{N} 2, \mathrm{D} 0)\}$
Alias $<:$ birthday $=\{(\mathrm{N} 0, \mathrm{~N} 1),(\mathrm{N} 1, \mathrm{~N} 2)\}=$ birthday :> Name
birthday :> Alias $=\{(\mathrm{N} 0, \mathrm{~N} 1)\}$
birthday' $=\{($ N0, N1), (N1, D0) $\}$
birthday ++ birthday $=\{($ N0, N1), (N1, D0), (N2, D0) $\}$

Boolean Operators

not	$!$	negation
and	$\& \&$	conjunction
or	II	disjunction
implies	\Rightarrow	implication
else		alternative
iff	<=>	bi-implication

Example

Four equivalent constraints:
F => G else H
F implies G else H
(F \&\& G) II ((! F) \&\& H)
$(F$ and $G)$ or $(($ not $F)$ and $H)$

Quantifiers

all $\quad \mathrm{F}$ holds for every x in e
some F holds for at least one x in e no $\quad F$ holds for no x in e lone $\quad \mathrm{F}$ holds for at most one x in e one $\quad \mathrm{F}$ holds for exactly one x in e

```
all x: e|F
all x: e1, y: e2 | F
all x, y: e|F
all disj x, y:e|F
```


Example

some n: Name, d: Date | d in n.birthday some name maps to some birthday - birthday book not empty no n: Name | n in n. `birthday
no name can be reached by lookups from itself - birthday book acyclic all n: Name | lone d: Date | d in n.birthday
every name maps to at most one birthday - birthday book is functional
all n : Name | no disj d, d': Date | ($\mathrm{d}+\mathrm{d}$ ') in n.birthday
no name maps to two or more distinct birthday - same as above

Quantified Expressions

some e e has at least one tuple no e e has no tuples
lone e e has at most one tuple one e e has exactly one tuple
Example
some Nameset of names is not empty
some birthdaybirthday book is not empty - it has a tuple
no (birthday.Date - Name)
nothing is mapped to birthday except names
all n: Name | lone n.birthday
every name maps to at most one birthday

Let Expressions and Constraints

let $\mathrm{x}=\mathrm{e} \mid \mathrm{A}$
f implies e1 else e2

A can be a constraint or an expression.
if f then e1 else $e 2$

Example

Four equivalent constraints:
all n : Name | (some n.lunarBirthday
implies n.birthday $=\mathrm{n}$.lunarBirthday else n .birthday $=\mathrm{n}$.solarBirthday)
all n : Name | let $\mathrm{I}=\mathrm{n}$.lunarBirthday, $\mathrm{d}=\mathrm{n}$.birthday \mid
(some I implies $d=1$ else $d=n$.solarBirthday)
all n : Name \mid let $\mathrm{I}=\mathrm{n}$.lunarBirthday \mid
n.birthday $=$ (some \mid implies \mid else n. solarBirthday $)$
all n : Name | n .birthday $=$
(let I = n.lunarBirthday \mid (some I implies I else n.solarBirthday))

Comprehensions

$\{\times 1:$ e1, x2: e2, ..., xn: en | F $\}$
Example
\{n: Name | no n. ${ }^{\text {© birthday \& Date }\}}$ set of names that don't resolve to any actual birthdays
\{n: Name, D: Date | n \rightarrow D in "birthday binary relation mapping names to reachable birthday

Declarations

relation-name : expression
almost the same as the meaning of a subset constraint x in e

Example

birthday: Name->Date
a signal birthday book, maps names to birthdays
birth: Book->Name->Date
a collection of birthday books, maps books to names to birthday
birthday: Name->(Name + Date)
a multilevel birthday book maps names to names and birthday

Set Multiplicities

$$
\begin{array}{ll|l}
\text { set } & \text { any number } \\
\text { one } & \text { exactly one } \\
\text { lone } & \text { zero or one } & \mathrm{x}: m \text { e } \\
\mathrm{x}: \mathrm{e}<=>\mathrm{x}: \text { one } \mathrm{e}
\end{array}
$$

Example

RecentlyUsed: set Name
RecentlyUsed is a subset of the set Name
myBirthday: Date
myBirthday is a singleton subset of Date myName: lone Name
myName is either empty or a singleton subset of Name
theirBirthday: some Date
theirBirthday is a nonempty subset of Date

Relation Multiplicities

r: A $m \rightarrow n \mathrm{~B}$r: A $m \rightarrow n \mathrm{~B} \Leftrightarrow$ ((all a: $\mathrm{A} \mid n$ a.r) and (all b: B|m r.b))r : $A \rightarrow B<=>$: A set $->$ set Br: A $\rightarrow(\mathrm{B} m \rightarrow n \mathrm{C}) \Leftrightarrow$ all a: A a.r: $\mathrm{B} m \rightarrow n \mathrm{C}$r: $(\mathrm{A} m \rightarrow n \mathrm{~B}) \rightarrow \mathrm{C} \Leftrightarrow$ all $\mathrm{c}: \mathrm{C} \mid$ r.c: $\mathrm{A} m \rightarrow n \mathrm{~B}$

Example

birthday: Name -> lone Date each name refers to at most one birthday
members: Group lone -> some Addr
address belongs to at most one group name and group contains at least one address

Outline

(1) About Alloy

(2) Logic
(3) Language
4. Analysis

"I'm My Own Grandpa" in Alloy

```
module grandpa /*module header*/
abstract sig Person { /*signature declarations*/
    father: lone Man,
    mother: Ione Woman
}
sig Man extends Person {
    wife: lone Woman
}
sig Woman extends Person {
    husband: Ione Man
}
fact { /*constriant paragraphs*/
    no p: Person | p in p. ^(mother + father)
    wife = `husband
}
```


"I'm My Own Grandpa" in Alloy (Cont'd)

```
assert noSelfFather { /*assertions*/
    no m: Man | m = m.father
}
check noSelfFather /*commands*/
fun grandpas[p: Person] : set Person { /*constriant paragraphs*/
    p.(mother + father).father
}
pred ownGrandpa[p: Person] { /*constriant paragraphs*/
    p in grandpas[p]
}
run ownGrandpa for 4 Person /*commands*/
```


Signatures

```
sig A {}
set of atoms A
sig A {}
sig B {}
disjoint sets A and B (no A & B)
sig A, B {}
same as above
sig B extends A {}
set B is a subset of A (B in A)
sig B extends A {}
sig C extends A {}
B and C are disjoint subsets of A (B in A && C in A && no B & C)
sig B, C extends A {}
same as above
```


Signatures (Cont'd)

```
abstract sig A {}
sig B extends A {}
sig C extends A {}
A partitioned by disjoint subsets B and C (no B & C && A = (B+C))
sig B in A {}
B is a subset of A - not necessarily disjoint from any other set
sig C in A + B {}
C is a subset of the union of }A\mathrm{ and }
one sig A {}
lone sig B {}
some sig C {}
A is a singleton set
B is a singleton or empty
C is a non-empty set
```


Field Declarations

$\boldsymbol{\operatorname { s i g }} \mathrm{A}\{\mathrm{f}: \mathrm{e}\}$
f is a binary relation with domain A and range given by expression e f is constrained to be a function: (f: A \rightarrow one e) or (all a: A \| a.f: e)
$\boldsymbol{s i g} A\{f 1$: one e1, f2: lone e2, f3: some e3, f4: set e4 \}
(all a: A|a.fn:me)
$\boldsymbol{\operatorname { s i g }} \mathrm{A}\{\mathrm{f}, \mathrm{g}: \mathrm{e}\}$
two fields with same constraints
sig $A\{f: e 1 m \rightarrow n e 2\}$
(f: A -> (e1 m -> n e2)) or (all a: A | a.f: e1 m -> ne2)
sig Book \{
names: set Name,
birthday: names -> Date
\}
dependent fields (all b: Book | b.birthday: b.names -> Date)

grandpa: field

```
abstract sig Person {
    father: lone Man,
    mother: Ione Woman
}
sig Man extends Person {
    wife: Ione Woman
}
sig Woman extends Person {
    husband: lone Man
}
```fathers are men and everyone has at most onemothers are women and everyone has at most onewives are women and every man has at most onehusbands are men and every woman has at most one

\section*{Facts}
```

fact { F }
fact f { F }
sig S { ...}{ F }

```
facts introduce constraints that are assumed to always hold
```

Example
fact {
no p: Person |
p in p. `(mother + father)
wife = ~husband
}

```

\section*{Functions}
fun \(f[x 1: e 1, \ldots, x n: e n]: e\{E\}\)
functions are named expression with declaration parameters and a declaration expression as a result invoked by providing an expression for each parameter

\section*{Example}
fun grandpas[p: Person] : set Person \{
p.(mother + father).father

\section*{Predicates}
pred \(\mathrm{p}[\times 1\) : e1, ..., xn: en \(]\{\mathrm{F}\}\)
named formula with declaration parameters
```

Example
pred ownGrandpa[p: Person] {
p in grandpas[p]
}

```

\section*{"Receiver" Syntax}
fun \(f[x: X, y: Y, \ldots]: Z\{\ldots x . .\).
fun X.f[y:Y, ...]: Z \{...this...\}
pred \(p[x: X, y: Y, \ldots]\{\ldots x . .\). pred X.ply:Y, ...] \{...this...\}

Whether or not the predicate or function is declared in this way, it can be used in the form
\[
x . p[y, \ldots]
\]
where \(x\) is taken as the first argument, \(y\) as the second, and so on.
```

Example
fun Person.grandpas : set Person {
this.(mother + father).father
}
pred Person.ownGrandpa {
this in this.grandpas
}

```

\section*{Assertions and Check Command}

\section*{assert a \(\{\mathrm{F}\}\)}
constraint intended to follow from facts of the model check a scope
instructs analyzer to search for counterexample to assertion within scope
if model has facts \(M\), finds solution to \(M \& \&!F\)
```

Example
fact {
no p: Person | p in p. `(mother + father)
wife = ~husband
}

```
assert noSelfFather \{
 no \(m\) : Man | \(m=m\).father
\}
check noSelfFather

\section*{Run Command}
pred \(\mathrm{p}[\mathrm{x}: \mathrm{X}, \mathrm{y}: \mathrm{Y}, \ldots]\{\mathrm{F}\}\)
run \(p\) scope
instructs analyzer to search for instance of predicate within scope
- if model has facts \(M\), finds solution to
\(M \& \&(\) some \(x: X, y: Y, \ldots \mid F)\)
fun \(f[x: X, y: Y, \ldots]: R\{E\}\)
run \(f\) scope
instructs analyzer to search for instance of function within scope
- if model has facts \(M\), finds solution to
\(M \& \&(\) some \(x: X, y: Y, \ldots\), result \(: R \mid\) result \(=E)\)

\section*{grandpa: predicate simulation}
```

fun grandpas[p: Person] : set Person {
p.(mother + father).father
}
pred ownGrandpa[p: Person] {
p in grandpas[p]
}
run ownGrandpa for 4 Person

```
- command instructs analyzer to search for configuration with at most 4 people in which a man is his own grandfather

\section*{Types and Type Checking}

Alloy's type system has two functions.
It allows the analyzer to catch errors before any serious analysis is performed.
It is used to resolve overloading.
A basic type is introduced for each top-level signature and for each extension signature.
A signature that is declared independently of any other is a top-level signature.
When signature \(A 1\) extends signature \(A\), the type associated with A1 is a subtype of the type associated with \(A\).
A subset signature acquired its parent's type.
i. If declared as a subset of a union of signatures, its type is the union of the types of its parents.
Two basic type are said to overlap if one is a subtype of the other.

\section*{Types and Type Checking (Cont'd)}

Every expression has a relational type, consisting of a union of products:
\[
A_{1}->B_{1}->\ldots+A_{2}->B_{2}->\ldots+\ldots
\]
where each of the \(A_{i}, B_{i}\), and so on, is a basic type.
A binary relation's type, for example, will look like this:
\[
A_{1}->B_{1}+A_{2}->B_{2}+\ldots
\]
and a set's type like this:
\[
A_{1}+A_{2}+\ldots
\]

The type of an expression is itself just an Alloy expression.Types are inferred automatically so that the value of the type always contains the value of the expressions. It's an overapproximation.
. If two types have an empty intersection, the expressions they were obtained from must also have an empty intersection.

\section*{Types and Type Checking (Cont'd)}

There are two kinds of type error.
It is illegal to form expressions that would give relations of mixed arity.
e. An expression is illegal if it can be shown, from the declarations alone, to be redundant, or to contain a redundant subexpression.The subtype hierarchy is used primarily to determine whether types are disjoint.
-
The typing of an expression of the form s.f where \(s\) is a set and \(f\) is a relation only requires \(s\) and the domain of \(r\) to overlap.
ie The case that two types are disjoint is rejected, because it always results in the empty set.
Type checking is sound.
When checking an intersection expression, for example, if the resulting type is empty, the relation represented by the expression must be empty.

\section*{Types and Type Checking (Cont'd)}

A signature defines a local namespace for its declarations, so you can use the same field name in different signatures, and each occurence will refer to a different field.
When a field name appears that could refer to multiple fields, the types of the candidate fields are used to determine which field is meant.If more than one field is possible, an error is reported.
```

Example
sig Object, Block {}
sig Directory extends Object {contents: set Object}
sig File extends Object {contents: set Block}
all f: File | some f.contents
// The occurrence of the field name contents in the constraint is trivially
resolved.
all o: Object | some o.contents
// The occurrence of the field name contents in the constraint is not resolved,
and the constraint is rejected.

```

\section*{Outline}

\section*{(1) About Alloy}
(2) Logic
(3) Language
(4) Analysis

\section*{The Alloy Analyzer}

The Alloy Analyzer is a 'model finder'.
Given a logical formula (in Alloy), it attempts to find a model that makes the formula true.
A model is a binding of the variables to values.
For simulation, the formula will be some part of the system description.
. If it's a state invariant INV, models of INV will be states that satisfy the invariant.
© If it's an operation OP, with variables representing the before and after states, models of OP will be legal state transitions.
For checking, the formula is a negation, usually of an implication.
ie To check that the system described by the property SYS has a property PROP, you would assert (SYS implies PROP).
6. The Alloy Analyzer negates the assertion, and looks for a model of (SYS and not PROP), which, if found, will be a counterexample to the claim.

\section*{The Small Scope Hypothesis}

Simulation is for determining consistency (i.e., satisfiability) and Checking is for determining validity And these problems are undecidable for Alloy specifications.
-
Alloy analyzer restricts the simulation and checking operations to a finite scope.
Validity and consistency problem within a finite scope are decidable problems.
Most bugs have small counterexample.
If an assertion is invalid, it probably has a small counterexample.

\section*{How Does It Work}

The Alloy Analyzer is essentially a compiler.
- It translates the problem to be analyzed into a (usually huge) boolean formula.
Think about a particular value of a binary relation \(r\) from a set \(A\) to a set \(B\) :
. The value can be represented as an adjacency matrix of 0 's and 1 's, with a 1 in row \(i\) and column \(j\) when the \(i\) th element of \(A\) is mapped to the \(j\) th element of \(B\).
So the space of all possible values of \(r\) can be represented by a matrix of boolean variables.
We The dimensions of these matrices are determined by the scope; if the scope bounds \(A\) by 3 and \(B\) by \(4, r\) will be a \(3 \times 4\) matrix containing 12 boolean variables, and having \(2^{12}\) possible values.

\section*{How Does It Work (Cont'd)}

Now, for each relational expression, a matrix is created whose elements are boolean expressions.

For example, the expression corresponding to \(p+q\) for binary relations \(p\) and \(q\) would have the expression \(p_{i, j} \vee q_{i, j}\) in row \(i\) and column \(j\).For each relational formula, a boolean formula is created.
*: For example, the formula corresponding to pinq would be the conjunction of \(p_{i, j} \Rightarrow q_{i, j}\) over all values of \(i\) and \(j\).
The resulting formula is handed to a SAT solver, and the solution is translated back by the Alloy Analyzer into the language of the model.All problems are solved within a user-specified scope that bounds the size of the domains, and thus makes the problem finite (and reducable to a boolean formula).
Alloy analyzer implements an efficient translation in the sense that the problem instance presented to the SAT solver is as small as possible.

\section*{Different from Model Checkers}

The Alloy Analyzer is designed for analyzing state machines with operations over complex states.
Model checkers are designed for analyzing state machines that are composed of several state machines running in parallel, each with relatively simple state.
Alloy allows structural constraints on the state to be described very directly (with sets and relations), whereas most model checking languages provide only relatively low-level data types (such as arrays and records).
- Model checkers do a temporal analysis that compares a state machine to another machine or a temporal logic formula.```

