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What is Alloy

Alloy is a structural modelling language based on first-order logic,
for expressing complex structural constraints and behaviour.

The Alloy Analyzer is a constraint solver that provides fully
automatic simulation and checking.

Developed by the Software Design Group at MIT.
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How is Alloy Related to Z and OCL

Alloy can be viewed as a subset of Z.

Unlike Z, Alloy is first order, which makes it analyzable (but also
less expressive).

Alloy is a pure ASCII notation and doesn’t require special
typesetting tools.

Alloy is similar to OCL, the Object Language of UML, but it has a
more conventional syntax and a simpler semantics, and is designed
for automatic analysis.
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Alloy = Logic + Language + Analysis

Logic

first order logic + relational calculus

Language

syntax for structuring specifications in the logic

Analysis

bounded exhaustive search for counterexample to a claimed property
using SAT
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Example

A birthday book...

Associates birthday with shorter names that are more convenient to
use.
alias: a nickname.
group: an entire set of friends.
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Three Logics in One

Predicate calculus style
Relation names are used as predicates and tuples formed from
quantified variables.

all n: Name, d, d’: Date |
n -> d in birthday and n -> d’ in birthday implies d = d’

Navigation expression style (the most expressive)
Expressions denote sets, which are formed by “navigating” from
quantified variables along relations.

all n: Name | lone n.birthday

Relational calculus style
Expressions denote relations, and there are no quantifiers at all.

no ~birthday.birthday - iden
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Atoms and Relations

Atoms are Alloy’s primitive entities

indivisible, immutable, uninterpreted

Relations associate atoms with one another

consists of a set of tuples, each tuple being a sequence of atoms
all relations are first-order, relations cannot contain relations

Every value in Alloy logic is a relation

relations, sets, scalars all the same thing
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Everything Is a Relation

Sets are unary relations
Name = {(N0), (N1), (N2)}
Date = {(D0), (D1), (D2)}
Book = {(B0), (B1)}

Scalars are singleton sets (unary relation with only one tuple)
myName = {(N0)}
yourName = {(N2)}
myBook = {(B0)}

Binary relation
name = {(B0, N0), (B1, N0), (B2, N2)}

Ternary relation
birthdays = {(B0, N0, D0), (B0, N1, D1),

(B1, N1, D2), (B1, N2, D2)}
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Constants

none empty set
univ universal set
iden identity

Example

Name = {(N0), (N1), (N2)}
Date = {(D0), (D1)}

none = {}
univ = {(N0), (N1), (N2), (D0), (D1)}
iden = {(N0, N0), (N1, N1), (N2, N2), (D0, D0), (D1, D1)}
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Set Operators

+ union
& intersection
- difference
in subset
= equality

Example

Name = {(N0), (N1), (N2)}
Alias = {(N1), (N2)}
Group = {(N0)}
RecentlyUsed = {(N0), (N2)}

Alias + Group = {(N0), (N1), (N2)}
Alias & RecentlyUsed = {(N2)}
Name - RecentlyUsed = {(N1)}
RecentlyUsed in Alias = false
RecentlyUsed in Name = true
Name = Group + Alias = true
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Product Operator

-> cross product

Example

Name = {(N0), (N1)}
Date = {(D0), (D1)}
Book = {(B0)}

Name->Date = {(N0, D0), (N0, D1), (N1, D0), (N1, D1)}
Book->Name->Date =
{(B0, N0, D0), (B0, N0, D1), (B0, N1, D0), (B0, N1, D1)}
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Relational Join

p.q ≡
(a, b)
(a, c)
(b, d)

.

(a, d, c)
(b, c, c)
(c, c, c)
(b, a, d)

=
(a, c, c)
(a, a, d)

x.f ≡ (c) .

(a, b)
(b, d)
(c, a)
(d, a)

= (a)
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Join Operators

. dot join
[] box join

e1[e2] = e2.e1
a.b.c[d] = d.(a.b.c)

Example

Book = {(B0)}
Name = {(N0), (N1), (N2)}
Date = {(D0), (D1), (D2)}

myName = {(N1)}
myBirth = {(D0)}

birthday = {(B0, N0, D0), (B0, N1, D0), (B0, N2, D2)}

Book.birthday = {(N0, D0), (N1, D0), (N2, D2)}
Book.birthday[myName] = {(D0)}
Book.birthday.myName = {}
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Unary Operators

~ transpose
^ transitive closure
* reflexive transitive closure

(apply only to binary relations)

^r = r + r.r + r.r.r + ...
*r = iden + ^r

Example

Node = {(N0), (N1), (N2), (N3)}
first = {(N0)} next = {(N0, N1), (N1, N2), (N2, N3)}

~next = {(N1, N0), (N2, N1), (N3, N2)}
^next = {(N0, N1), (N0, N2), (N0, N3),

(N1, N2), (N1, N3), (N2, N3)}
*next = {(N0, N0), (N0, N1), (N0, N2), (N0, N3), (N1, N1),

(N1, N2), (N1, N3), (N2, N2), (N2, N3), (N3, N3)}

first.^next = {(N1), (N2), (N3)}
first.*next = Node
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Restriction and Override

<: domain restriction
:> range restriction
++ override

p ++ q =
p - (domain[q] <: p) + q

Example

Name = {(N0), (N1), (N2)}
Alias = {(N0), (N1)} Date = {(D0)}
birthday = {(N0, N1), (N1, N2), (N2, D0)}

birthday :> Date = {(N2, D0)}
Alias <: birthday = {(N0, N1), (N1, N2)} = birthday :> Name
birthday :> Alias = {(N0, N1)}

birthday’ = {(N0, N1), (N1, D0)}
birthday ++ birthday’ = {(N0, N1), (N1, D0), (N2, D0)}
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Boolean Operators

not ! negation
and && conjunction
or || disjunction
implies => implication
else alternative
iff <=> bi-implication

Example

Four equivalent constraints:

F => G else H
F implies G else H
(F && G) || ((!F) && H)
(F and G) or ((not F) and H)
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Quantifiers

all F holds for every x in e
some F holds for at least one x in e
no F holds for no x in e
lone F holds for at most one x in e
one F holds for exactly one x in e

all x: e | F
all x: e1, y: e2 | F
all x, y: e | F
all disj x, y: e | F

Example

some n: Name, d: Date | d in n.birthday
some name maps to some birthday - birthday book not empty

no n: Name | n in n.^birthday
no name can be reached by lookups from itself - birthday book acyclic

all n: Name | lone d: Date | d in n.birthday
every name maps to at most one birthday - birthday book is functional

all n: Name | no disj d, d’: Date | (d + d’) in n.birthday
no name maps to two or more distinct birthday - same as above
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Quantified Expressions

some e e has at least one tuple
no e e has no tuples
lone e e has at most one tuple
one e e has exactly one tuple

Example

some Name
set of names is not empty

some birthday
birthday book is not empty - it has a tuple

no (birthday.Date - Name)
nothing is mapped to birthday except names

all n: Name | lone n.birthday
every name maps to at most one birthday
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Let Expressions and Constraints

let x = e | A
f implies e1 else e2

A can be a constraint or an expression.
if f then e1 else e2

Example

Four equivalent constraints:

all n: Name | (some n.lunarBirthday
implies n.birthday = n.lunarBirthday else n.birthday = n.solarBirthday)

all n: Name | let l = n.lunarBirthday, d = n.birthday |
(some l implies d = l else d = n.solarBirthday)

all n: Name | let l = n.lunarBirthday |
n.birthday = (some l implies l else n.solarBirthday)

all n: Name | n.birthday =
(let l = n.lunarBirthday | (some l implies l else n.solarBirthday))
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Comprehensions

{x1: e1, x2: e2, ..., xn: en | F}

Example

{n: Name | no n.^birthday & Date}
set of names that don’t resolve to any actual birthdays

{n: Name, D: Date | n -> D in ^birthday}
binary relation mapping names to reachable birthday
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Declarations

relation-name : expression

almost the same as the meaning of a subset constraint x in e

Example

birthday: Name->Date
a signal birthday book, maps names to birthdays

birth: Book->Name->Date
a collection of birthday books, maps books to names to birthday

birthday: Name->(Name + Date)
a multilevel birthday book maps names to names and birthday
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Set Multiplicities

set any number
one exactly one
lone zero or one
some one or more

x: m e
x: e <=> x: one e

Example

RecentlyUsed: set Name
RecentlyUsed is a subset of the set Name

myBirthday: Date
myBirthday is a singleton subset of Date

myName: lone Name
myName is either empty or a singleton subset of Name

theirBirthday: some Date
theirBirthday is a nonempty subset of Date

Jen-Feng Shih (SVVRL @ IM.NTU) Alloy December 10, 2009 24 / 49



Relation Multiplicities

r: A m -> n B

r: A m -> n B <=> ((all a: A | n a.r) and (all b: B | m r.b))

r: A -> B <=> r: A set -> set B

r: A -> (B m -> n C) <=> all a: A | a.r: B m -> n C

r: (A m -> n B) -> C <=> all c: C | r.c: A m -> n B

Example

birthday: Name -> lone Date
each name refers to at most one birthday

members: Group lone -> some Addr
address belongs to at most one group name and group contains at least one

address
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“I’m My Own Grandpa” in Alloy

module grandpa /*module header*/
abstract sig Person { /*signature declarations*/

father: lone Man,
mother: lone Woman
}
sig Man extends Person {

wife: lone Woman
}
sig Woman extends Person {

husband: lone Man
}

fact { /*constriant paragraphs*/
no p: Person | p in p.^(mother + father)
wife = ~husband
}
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“I’m My Own Grandpa” in Alloy (Cont’d)

assert noSelfFather { /*assertions*/
no m: Man | m = m.father
}
check noSelfFather /*commands*/

fun grandpas[p: Person] : set Person { /*constriant paragraphs*/
p.(mother + father).father
}
pred ownGrandpa[p: Person] { /*constriant paragraphs*/

p in grandpas[p]
}
run ownGrandpa for 4 Person /*commands*/
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Signatures

sig A {}
set of atoms A

sig A {}
sig B {}
disjoint sets A and B (no A & B)

sig A, B {}
same as above

sig B extends A {}
set B is a subset of A (B in A)

sig B extends A {}
sig C extends A {}
B and C are disjoint subsets of A (B in A && C in A && no B & C)

sig B, C extends A {}
same as above
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Signatures (Cont’d)

abstract sig A {}
sig B extends A {}
sig C extends A {}
A partitioned by disjoint subsets B and C (no B & C && A = (B + C))

sig B in A {}
B is a subset of A - not necessarily disjoint from any other set

sig C in A + B {}
C is a subset of the union of A and B

one sig A {}
lone sig B {}
some sig C {}
A is a singleton set
B is a singleton or empty
C is a non-empty set
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Field Declarations

sig A {f: e}
f is a binary relation with domain A and range given by expression e
f is constrained to be a function: (f: A -> one e) or (all a: A | a.f: e)

sig A { f1: one e1, f2: lone e2, f3: some e3, f4: set e4 }
(all a: A | a.fn : m e)

sig A {f, g: e}
two fields with same constraints

sig A {f: e1 m -> n e2}
(f: A -> (e1 m -> n e2)) or (all a: A | a.f : e1 m -> n e2)

sig Book {
names: set Name,
birthday: names -> Date
}
dependent fields (all b: Book | b.birthday: b.names -> Date)
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grandpa: field

abstract sig Person {
father: lone Man,
mother: lone Woman
}
sig Man extends Person {

wife: lone Woman
}
sig Woman extends Person {

husband: lone Man
}

fathers are men and everyone has at most one

mothers are women and everyone has at most one

wives are women and every man has at most one

husbands are men and every woman has at most one
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Facts

fact { F }
fact f { F }
sig S { ... }{ F }

facts introduce constraints that are assumed to always hold

Example

fact {
no p: Person |

p in p.^(mother + father)
wife = ~husband
}
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Functions

fun f[x1: e1, ..., xn: en] : e { E }
functions are named expression with declaration parameters and a
declaration expression as a result invoked by providing an
expression for each parameter

Example

fun grandpas[p: Person] : set Person {
p.(mother + father).father
}
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Predicates

pred p[x1: e1, ..., xn: en] { F }
named formula with declaration parameters

Example

pred ownGrandpa[p: Person] {
p in grandpas[p]
}
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“Receiver” Syntax

fun f[x: X, y: Y, ...] : Z {...x...}
fun X.f[y:Y, ...] : Z {...this...}

pred p[x: X, y: Y, ...] {...x...}
pred X.p[y:Y, ...] {...this...}

Whether or not the predicate or function is declared in this way, it
can be used in the form

x.p[y, ...]
where x is taken as the first argument, y as the second, and so on.

Example

fun Person.grandpas : set Person {
this.(mother + father).father
}

pred Person.ownGrandpa {
this in this.grandpas
}
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Assertions and Check Command
assert a { F }

constraint intended to follow from facts of the model

check a scope

instructs analyzer to search for counterexample to assertion within
scope

if model has facts M, finds solution to M&&!F

Example

fact {
no p: Person | p in p.^(mother + father)
wife = ~husband
}

assert noSelfFather {
no m: Man | m = m.father
}
check noSelfFather
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Run Command

pred p[x: X, y: Y, ...] { F }
run p scope

instructs analyzer to search for instance of predicate within scope

if model has facts M, finds solution to
M && (some x : X , y : Y , ... | F )

fun f[x: X, y: Y, ...] : R { E }
run f scope

instructs analyzer to search for instance of function within scope

if model has facts M, finds solution to
M && (some x : X , y : Y , ..., result : R | result = E )
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grandpa: predicate simulation

fun grandpas[p: Person] : set Person {
p.(mother + father).father
}

pred ownGrandpa[p: Person] {
p in grandpas[p]
}

run ownGrandpa for 4 Person

command instructs analyzer to search for configuration with at
most 4 people in which a man is his own grandfather
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Types and Type Checking

Alloy’s type system has two functions.

It allows the analyzer to catch errors before any serious analysis is
performed.
It is used to resolve overloading.

A basic type is introduced for each top-level signature and for each
extension signature.

A signature that is declared independently of any other is a top-level
signature.

When signature A1 extends signature A, the type associated with
A1 is a subtype of the type associated with A.

A subset signature acquired its parent’s type.

If declared as a subset of a union of signatures, its type is the union
of the types of its parents.

Two basic type are said to overlap if one is a subtype of the other.
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Types and Type Checking (Cont’d)

Every expression has a relational type, consisting of a union of
products:

A1->B1->... + A2->B2->... + ...

where each of the Ai , Bi , and so on, is a basic type.

A binary relation’s type, for example, will look like this:

A1->B1 + A2->B2 + ...

and a set’s type like this:

A1 + A2 + ...

The type of an expression is itself just an Alloy expression.

Types are inferred automatically so that the value of the type
always contains the value of the expressions. It’s an
overapproximation.

If two types have an empty intersection, the expressions they were
obtained from must also have an empty intersection.
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Types and Type Checking (Cont’d)

There are two kinds of type error.

It is illegal to form expressions that would give relations of mixed
arity.
An expression is illegal if it can be shown, from the declarations
alone, to be redundant, or to contain a redundant subexpression.

The subtype hierarchy is used primarily to determine whether types
are disjoint.

The typing of an expression of the form s.f where s is a set and f
is a relation only requires s and the domain of r to overlap.

The case that two types are disjoint is rejected, because it always
results in the empty set.

Type checking is sound.

When checking an intersection expression, for example, if the
resulting type is empty, the relation represented by the expression
must be empty.
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Types and Type Checking (Cont’d)
A signature defines a local namespace for its declarations, so you
can use the same field name in different signatures, and each
occurence will refer to a different field.
When a field name appears that could refer to multiple fields, the
types of the candidate fields are used to determine which field is
meant.
If more than one field is possible, an error is reported.

Example

sig Object, Block {}
sig Directory extends Object {contents: set Object}
sig File extends Object {contents: set Block}
all f: File | some f.contents
// The occurrence of the field name contents in the constraint is trivially
resolved.
all o: Object | some o.contents
// The occurrence of the field name contents in the constraint is not resolved,
and the constraint is rejected.
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The Alloy Analyzer

The Alloy Analyzer is a ‘model finder’.

Given a logical formula (in Alloy), it attempts to find a model that
makes the formula true.

A model is a binding of the variables to values.

For simulation, the formula will be some part of the system
description.

If it’s a state invariant INV, models of INV will be states that satisfy
the invariant.
If it’s an operation OP, with variables representing the before and
after states, models of OP will be legal state transitions.

For checking, the formula is a negation, usually of an implication.

To check that the system described by the property SYS has a
property PROP, you would assert (SYS implies PROP).
The Alloy Analyzer negates the assertion, and looks for a model of
(SYS and not PROP), which, if found, will be a counterexample to
the claim.

Jen-Feng Shih (SVVRL @ IM.NTU) Alloy December 10, 2009 45 / 49



The Small Scope Hypothesis

Simulation is for determining consistency (i.e., satisfiability) and
Checking is for determining validity And these problems are
undecidable for Alloy specifications.

Alloy analyzer restricts the simulation and checking operations to a
finite scope.

Validity and consistency problem within a finite scope are decidable
problems.

Most bugs have small counterexample.

If an assertion is invalid, it probably has a small counterexample.
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How Does It Work

The Alloy Analyzer is essentially a compiler.

It translates the problem to be analyzed into a (usually huge)
boolean formula.

Think about a particular value of a binary relation r from a set A
to a set B:

The value can be represented as an adjacency matrix of 0’s and 1’s,
with a 1 in row i and column j when the ith element of A is mapped
to the jth element of B.
So the space of all possible values of r can be represented by a
matrix of boolean variables.
The dimensions of these matrices are determined by the scope; if the
scope bounds A by 3 and B by 4, r will be a 3× 4 matrix containing
12 boolean variables, and having 212 possible values.
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How Does It Work (Cont’d)
Now, for each relational expression, a matrix is created whose
elements are boolean expressions.

For example, the expression corresponding to p + q for binary
relations p and q would have the expression pi,j ∨ qi,j in row i and
column j .

For each relational formula, a boolean formula is created.
For example, the formula corresponding to pinq would be the
conjunction of pi,j ⇒ qi,j over all values of i and j .

The resulting formula is handed to a SAT solver, and the solution is
translated back by the Alloy Analyzer into the language of the
model.

All problems are solved within a user-specified scope that bounds
the size of the domains, and thus makes the problem finite (and
reducable to a boolean formula).

Alloy analyzer implements an efficient translation in the sense that
the problem instance presented to the SAT solver is as small as
possible.
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Different from Model Checkers

The Alloy Analyzer is designed for analyzing state machines with
operations over complex states.

Model checkers are designed for analyzing state machines that are
composed of several state machines running in parallel, each with
relatively simple state.

Alloy allows structural constraints on the state to be described very
directly (with sets and relations), whereas most model checking
languages provide only relatively low-level data types (such as
arrays and records).

Model checkers do a temporal analysis that compares a state
machine to another machine or a temporal logic formula.
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