Soundness and Completeness of Hoare Logic (Based on [Apt and Olderog 1997])

Yih-Kuen Tsay

Dept. of Information Management

National Taiwan University

Overview

- Given an adequate semantics for the programming language under consideration, the validity of a Hoare triple $\{p\}$ S $\{q\}$ can be precisely defined.
- A Hoare Logic for a programming language is sound if every Hoare triple proven by the logic is valid.
- A Hoare Logic for a programming language is complete if every valid Hoare triple can be proven by the logic.
- We shall develop these results for a very simple deterministic programming language.

A Simple Programming Language

We will consider a Hoare Logic for the following simple (deterministic) programming language:

$$S ::= \mathbf{skip}$$
 $| u := t$
 $| S_1; S_2$
 $| \mathbf{if} \ B \mathbf{then} \ S_1 \mathbf{else} \ S_2 \mathbf{fi}$
 $| \mathbf{while} \ B \mathbf{do} \ S \mathbf{od}$

Note: here t is an expression (first-order term) of the same type as variable u; B is a boolean expression.

We consider only programs that are free of syntactical or typing errors.

Proof Rules of Hoare Logic

 $\{p \land B\} \ S_1 \ \{q\} \qquad \{p \land \neg B\} \ S_2 \ \{q\}$

 $\{p\}$ if B then S_1 else S_2 fi $\{q\}$

(Conditional)

Proof Rules of Hoare Logic (cont.)

$$\frac{\{p \land B\} \ S \ \{p\}}{\{p\} \ \text{while} \ B \ \text{do} \ S \ \text{od} \ \{p \land \neg B\}}$$

$$\frac{p \rightarrow p' \quad \{p'\} \ S \ \{q'\} \quad q' \rightarrow q}{\{p\} \ S \ \{q\}}$$
(Consequence)

We will refer to this proof system as System PD.

Operational Semantics

- A program/statement with a start state is seen as an abstract machine.
- (1) The part of program that remains to be executed and (2) the current state constitute the configuration of the abstract machine.
- By executing the program step by step, the machine transforms from one configuration to another.
- A transition relation naturally arises between configurations.
- The (input/output) semantics $\mathcal{M}[S]$ of a program S can then be defined with the help of the above transition relation.

Operational Semantics (cont.)

- At a high level, a configuration is a pair $\langle S, \sigma \rangle$ where S is a program and σ is a "proper" state.
- A transition

$$\langle S, \sigma \rangle \to \langle R, \tau \rangle$$

means "executing S one step in state σ leads to state τ with R as the remainder of S to be executed."

- igoplus Let E denote the empty program. When the remainder R equals E, it means that S has terminated.
- The transition relation → can be defined inductively (in the form of axioms and rules) over the structure of a program.

Semantics of the Simple Language

To give an operational semantics of the simple language, we postulate the following transition axioms and rules:

- 1. $\langle \mathbf{skip}, \sigma \rangle \rightarrow \langle E, \sigma \rangle$
- **2.** $\langle u := t, \sigma \rangle \rightarrow \langle E, \sigma[u := \sigma(t)] \rangle$
- 3. $\frac{\langle S_1, \sigma \rangle \to \langle S_2, \tau \rangle}{\langle S_1; S, \sigma \rangle \to \langle S_2; S, \tau \rangle}$
- **4.** $\langle \mathbf{if} \ B \ \mathbf{then} \ S_1 \ \mathbf{else} \ S_2 \ \mathbf{fi}, \sigma \rangle \rightarrow \langle S_1, \sigma \rangle$, when $\sigma \models B$
- **5.** $\langle \mathbf{if} \ B \ \mathbf{then} \ S_1 \ \mathbf{else} \ S_2 \ \mathbf{fi}, \sigma \rangle \to \langle S_2, \sigma \rangle$, when $\sigma \models \neg B$
- 6. $\langle \mathbf{while} \ B \ \mathbf{do} \ S \ \mathbf{od}, \sigma \rangle \rightarrow \langle S; \mathbf{while} \ B \ \mathbf{do} \ S \ \mathbf{od}, \sigma \rangle$, when $\sigma \models B$
- 7. $\langle \mathbf{while} \ B \ \mathbf{do} \ S \ \mathbf{od}, \sigma \rangle \rightarrow \langle E, \sigma \rangle$, when $\sigma \models \neg B$

Transition Systems

- The preceding set of transition axioms and rules can be seen as a formal proof system, called a transition system.
- A transition $\langle S, \sigma \rangle \to \langle R, \tau \rangle$ is possible if it can be deduced in the transition system.
- This semantic is "high level", as assignments and evaluations of Boolean expressions are done in one step.

Transition Sequences and Computations

 \bullet A *transition sequence of* S *starting in* σ is a finite or infinite sequence of configurations

$$\langle S_0, \sigma_0 \rangle (= \langle S, \sigma \rangle) \rightarrow \langle S_1, \sigma_1 \rangle \rightarrow \cdots \rightarrow \langle S_i, \sigma_i \rangle \rightarrow \cdots$$

- A computation of S starting in σ is a transition sequence of S starting in σ that cannot be extended.
- A computation of S terminates in τ if it is finite and its last configuration is $\langle E, \tau \rangle$.

An Example

Consider the following program

$$S \equiv a[0] := 1; a[1] := 0;$$
 while $a[x] \neq 0$ do $x := x + 1$ od

- Let σ be a state in which x is 0.
- Let σ' stand for $\sigma[a[0] := 1][a[1] := 0]$.
- \bullet The following is the computation of S starting in σ :

$$\langle S, \sigma \rangle$$

- $\to \langle a[1] := 0; \mathbf{while} \ a[x] \neq 0 \ \mathbf{do} \ x := x + 1 \ \mathbf{od}, \sigma[a[0] := 1] \rangle$
- \rightarrow (while $a[x] \neq 0$ do x := x + 1 od, σ')
- $\rightarrow \langle x := x + 1; \mathbf{while} \ a[x] \neq 0 \ \mathbf{do} \ x := x + 1 \ \mathbf{od}, \sigma' \rangle$
- \rightarrow (while $a[x] \neq 0$ do x := x + 1 od, $\sigma'[x := 1]$)
- $\rightarrow \langle E, \sigma'[x := 1] \rangle$

Finite Transition Sequences

- For partial correctness of sequential programs, we will need only to talk about finite transition sequences.
- To that end, we take the reflexive transitive closure \rightarrow^* of \rightarrow .
- So, $\langle S, \sigma \rangle \rightarrow^* \langle R, \tau \rangle$ holds when
 - 1. $\langle R, \tau \rangle = \langle S, \sigma \rangle$ or
 - 2. $\langle S_0, \sigma_0 \rangle (= \langle S, \sigma \rangle) \rightarrow \langle S_1, \sigma_1 \rangle \rightarrow \cdots \rightarrow \langle S_n, \sigma_n \rangle (= \langle R, \tau \rangle)$ is a finite transition sequence.

Input/Output Semantics

- igcep Let Σ be the set of all "proper" states.
- The partial correctness semantics is a mapping

$$\mathcal{M}[S]: \Sigma \to \mathcal{P}(\Sigma)$$

with

$$\mathcal{M}[S](\sigma) = \{\tau \mid \langle S, \sigma \rangle \to^* \langle E, \tau \rangle\}.$$

- \red Extensions of $\mathcal{M}[S]$
 - $M[S](\bot) = \emptyset.$
 - \bullet For $X \subseteq \Sigma \cup \{\bot\}$, $\mathcal{M}[S](X) = \bigcup_{\sigma \in X} \mathcal{M}[S](\sigma)$.

Validity of a Hoare Triple

- •• Let [p] denote $\{\sigma \in \Sigma \mid \sigma \models p\}$, i.e., the set of states where p holds.
- The Hoare triple $\{p\}$ S $\{q\}$ is valid in the sense of partial correctness, written $\models \{p\}$ S $\{q\}$, if

$$\mathcal{M}[S]([p]) \subseteq [q].$$

About the While Loop

- Let Ω be a program such that $\mathcal{M}[\Omega](\sigma) = \emptyset$, for any σ .
- Define the following sequence of deterministic programs:

Lemmas for $\mathcal{M}[S]$

- 1. $\mathcal{M}[S]$ is monotonic, i.e., $X \subseteq Y \subseteq \Sigma \cup \{\bot\}$ implies $\mathcal{M}[S](X) \subseteq \mathcal{M}[S](Y)$.
- 2. $\mathcal{M}[S_1; S_2](X) = \mathcal{M}[S_2](\mathcal{M}[S_1](X))$.
- 3. $\mathcal{M}[(S_1; S_2); S_3](X) = \mathcal{M}[S_1; (S_2; S_3)](X)$.
- 4. $\mathcal{M}[\![\mathbf{if}\ B\ \mathbf{then}\ S_1\ \mathbf{else}\ S_2\ \mathbf{fi}]\!](X) = \mathcal{M}[\![S_1]\!](X \cap [\![B]\!]) \cup \mathcal{M}[\![S_2]\!](X \cap [\![\neg B]\!]).$
- 5. $\mathcal{M}[$ while B do S od $] = \bigcup_{k=0}^{\infty} \mathcal{M}[$ (while B do S od) k].

Soundness

Theorem (Soundness): The proof system PD is sound for partial correctness of programs in the simple programming language, i.e.,

$$\vdash_{PD} \{p\} \ S \ \{q\} \ \text{implies} \models \{p\} \ S \ \{q\}.$$

It suffices to prove that (1) the Hoare triples in all axioms of PD are valid and (2) all proof rules of PD are sound.

Note: a proof rule is sound if the validity of the Hoare triples in the premises implies the validity of the Hoare triple in the conclusion.

• skip: $\mathcal{M}[\![\mathbf{skip}]\!]([\![p]\!]) \subseteq [\![p]\!]$

$$\mathcal{M}[\![\mathbf{skip}]\!]([\![p]\!]) = \bigcup_{\sigma \in [\![p]\!]} \{\tau \mid \langle \mathbf{skip}, \sigma \rangle \to^* \langle E, \tau \rangle \}$$
$$= \bigcup_{\sigma \in [\![p]\!]} \{\sigma\} = [\![p]\!] \subseteq [\![p]\!].$$

• Assignment: $\mathcal{M}[\![u:=t]\!]([\![p[t/u]]\!])\subseteq [\![p]\!]$

It can be shown that (1)
$$\sigma(s[u:=t]) = \sigma[u:=\sigma(t)](s)$$
 and (2) $\sigma \models p[t/u]$ iff $\sigma[u:=\sigma(t)] \models p$.

Let $\sigma \in [p[t/u]]$.

From the transition axiom for assignment,

$$\mathcal{M}\llbracket u := t \rrbracket(\sigma) = \{\sigma[u := \sigma(t)]\}.$$

Since $\sigma \models p[t/u]$ iff $\sigma[u := \sigma(t)] \models p$, we have

$$\mathcal{M}\llbracket u := t \rrbracket(\sigma) \subseteq \llbracket p \rrbracket$$
 and hence $\mathcal{M}\llbracket u := t \rrbracket(\llbracket p[t/u] \rrbracket) \subseteq \llbracket p \rrbracket$.

• Composition: $\mathcal{M}[S_1]([p]) \subseteq [r]$ and $\mathcal{M}[S_2]([r]) \subseteq [q]$ imply $\mathcal{M}[S_1; S_2]([p]) \subseteq [q]$.

From the monotonicity of $\mathcal{M}[S_2]$, $\mathcal{M}[S_2](\mathcal{M}[S_1]([p])) \subseteq \mathcal{M}[S_2]([r]) \subseteq [q]$.

By an earlier lemma, $\mathcal{M}[S_2](\mathcal{M}[S_1]([p])) = \mathcal{M}[S_1; S_2]([p]).$

Conditional: $\mathcal{M}[S_1]([p \land B]) \subseteq [q]$ and $\mathcal{M}[S_2]([p \land \neg B]) \subseteq [q]$ imply $\mathcal{M}[\mathbf{if} \ B \ \mathbf{then} \ S_1 \ \mathbf{else} \ S_2 \ \mathbf{fi}]([p]) \subseteq [q].$

This follows from an earlier lemma, $\mathcal{M}[\![\mathbf{if}\ B\ \mathbf{then}\ S_1\ \mathbf{else}\ S_2\ \mathbf{fi}]\!](X) = \mathcal{M}[\![S_1]\!](X \cap [\![B]\!]) \cup \mathcal{M}[\![S_2]\!](X \cap [\![\neg B]\!]).$

• While: $\mathcal{M}[S]([p \land B]) \subseteq [p]$ implies $\mathcal{M}[\text{while } B \text{ do } S \text{ od}]([p]) \subseteq [p \land \neg B].$

From Lemma 5 for $\mathcal{M}[\![\cdot]\!]$, it boils down to show that $\bigcup_{k=0}^{\infty} \mathcal{M}[\![(\mathbf{while}\ B\ \mathbf{do}\ S\ \mathbf{od})^k]\!]([\![p]\!]) \subseteq [\![p \land \neg B]\!].$

We prove by induction that, for all $k \geq 0$,

$$\mathcal{M}[(\mathbf{while}\ B\ \mathbf{do}\ S\ \mathbf{od})^k]([p]) \subseteq [p \land \neg B].$$

The base case k = 0 is clear.

```
\mathcal{M}[\mathbf{while}\ B\ \mathbf{do}\ S\ \mathbf{od})^{k+1}]([p])
= { definition of (while B \operatorname{do} S \operatorname{od})^{k+1} }
      \mathcal{M}[\mathbf{if} \ B \ \mathbf{then} \ S; (\mathbf{while} \ B \ \mathbf{do} \ S \ \mathbf{od})^k \ \mathbf{else} \ \mathbf{skip} \ \mathbf{fi}]([p])
= { Lemma 4 for \mathcal{M}[\cdot] }
      \mathcal{M}[S]; (while B do S od)^k[([p \land B]) \cup \mathcal{M}[\mathbf{skip}]([p \land \neg B])
= { Lemma 2 for \mathcal{M}[\cdot] and semantics of skip }
      \mathcal{M}[(\mathbf{while}\ B\ \mathbf{do}\ S\ \mathbf{od})^k](\mathcal{M}[S][p \wedge B]) \cup [p \wedge \neg B]
         { the premise and monotonicity of \mathcal{M}[\cdot] }
      \mathcal{M}[(\mathbf{while}\ B\ \mathbf{do}\ S\ \mathbf{od})^k]([p]) \cup [p \land \neg B]
\llbracket p \wedge \neg B \rrbracket (\cup \llbracket p \wedge \neg B \rrbracket)
```


Consequence: $p \to p'$, $\mathcal{M}[S]([p']) \subseteq [q']$, and $q' \to q$ imply $\mathcal{M}[S]([p]) \subseteq [q]$.

First of all, $\llbracket p \rrbracket \subseteq \llbracket p' \rrbracket$ and $\llbracket q' \rrbracket \subseteq \llbracket q \rrbracket$.

From the monotonicity of $\mathcal{M}[S]$, $\mathcal{M}[S]([p]) \subseteq \mathcal{M}[S]([p']) \subseteq [q'] \subseteq [q]$.

About Completeness

- Assertions that we use for a programming language often involve numbers/integers.
- According to Gödel's First Incompleteness Theorem, there is no complete proof system (that is consistent/sound) for the first-order theory of arithmetic.
- We therefore assume that all true assertions are given (as axioms).
- The completeness of Hoare Logic then is actually relative to the truth of all assertions.

Weakest Liberal Precondition

- Let S be a program in the simple programming language.

$$wlp(S, \Phi) = \{ \sigma \mid \mathcal{M}[S](\sigma) \subseteq \Phi \}.$$

- $wlp(S, \Phi)$ is called the *weakest liberal precondition* of S with respect to Φ .
- Informally, $wlp(S, \Phi)$ is the set of all states σ such that whenever S is activated in σ and properly terminates, the output state is in Φ .

Definability of $wlp(S, \Phi)$

- lacktriangle An assertion p defines a set Φ of states if $\llbracket p \rrbracket = \Phi$.
- Assuming that the assertion language includes addition and multiplication of natural numbers, there is an assertion p defining $wlp(S, \llbracket q \rrbracket)$, i.e., with $\llbracket p \rrbracket = wlp(S, \llbracket q \rrbracket)$.
- Proof of the above statement requires a technique called *Gödelization* and will not be given here.
- We will write wlp(S,q) to denote the assertion p such that $[\![p]\!] = wlp(S,[\![q]\!])$.

Lemmas for wlp

- 1. $wlp(\mathbf{skip}, q) \leftrightarrow q$.
- 2. $wlp(u := t, q) \leftrightarrow q[t/u]$.
- 3. $wlp(S_1; S_2, q) \leftrightarrow wlp(S_1, wlp(S_2, q))$.
- **4.** $wlp(\mathbf{if}\ B\ \mathbf{then}\ S_1\ \mathbf{else}\ S_2\ \mathbf{fi},q) \leftrightarrow (B \wedge wlp(S_1,q)) \vee (\neg B \wedge wlp(S_2,q)).$
- 5. $wlp(\mathbf{while} \ B \ \mathbf{do} \ S_1 \ \mathbf{od}, q) \land B \rightarrow wlp(S_1, wlp(\mathbf{while} \ B \ \mathbf{do} \ S_1 \ \mathbf{od}, q)).$
- **6.** $wlp(\mathbf{while}\ B\ \mathbf{do}\ S_1\ \mathbf{od},q) \land \neg B \to q.$
- **7.** $\models \{p\} \ S \ \{q\} \ \text{iff} \ p \to wlp(S,q).$

Completeness

Theorem (Completeness): The proof system PD is complete for partial correctness of programs in the simple programming language, i.e.,

$$\models \{p\} \ S \ \{q\} \ \text{implies} \ \vdash_{PD} \{p\} \ S \ \{q\}.$$

We first prove $\vdash_{PD} \{wlp(S,q)\}\ S\ \{q\}$, for all S and q. This is done by induction.

The base cases (skip and assignment) are trivial.

Completeness (cont.)

• Conditional: $S \equiv \text{if } B \text{ then } S_1 \text{ else } S_2 \text{ fi.}$

From Lemma 4 for wlp, we have

- (1) $wlp(S,q) \wedge B \rightarrow wlp(S_1,q)$ and
- (2) $wlp(S,q) \wedge \neg B \rightarrow wlp(S_2,q)$.

From the induction hypothesis, we have

- (3) $\vdash_{PD} \{ wlp(S_1, q) \} S_1 \{ q \}$ and
- **(4)** $\vdash_{PD} \{ wlp(S_2, q) \} S_2 \{ q \}.$

Applying the consequence rule to (1) and (3) and to (2) and (4), we have $\vdash_{PD} \{wlp(S,q) \land B\} S_1 \{q\}$ and $\vdash_{PD} \{wlp(S,q) \land \neg B\} S_2 \{q\}$.

From the conditional rule, we have $\vdash_{PD} \{wlp(S,q)\}\ S\ \{q\}$.

Completeness (cont.)

• While: $S \equiv \text{while } B \text{ do } S_1 \text{ od.}$

The induction hypothesis states that

$$\vdash_{PD} \{ wlp(S_1, wlp(S, q)) \} S_1 \{ wlp(S, q) \}.$$

Then, from Lemma 5 for wlp and the consequence rule,

$$\vdash_{PD} \{wlp(S,q) \land B\} S_1 \{wlp(S,q)\}.$$

So, from the while rule,

$$\vdash_{PD} \{wlp(S,q)\} S \{wlp(S,q) \land \neg B\}.$$

From Lemma 6 for wlp and the consequence rule,

$$\vdash_{PD} \{wlp(S,q)\} S \{q\}.$$

Completeness (cont.)

- Now suppose $\models \{p\} \ S \ \{q\}$.
- From Lemma 7 for wlp, $p \rightarrow wlp(S, q)$.
- From $\vdash_{PD} \{wlp(S,q)\}\ S\ \{q\}$ and the consequence rule, $\vdash_{PD} \{p\}\ S\ \{q\}$.

