Suggested Solutions for Homework Assignment \#2

We assume the binding powers of the logical connectives and the entailment symbol decrease in this order: $\neg,\{\forall, \exists\},\{\wedge, \vee\}, \rightarrow, \leftrightarrow, \vdash$.

1. Prove, using Gentzen's System $L K$, the validity of the following sequents:
(a) $\forall x(P(x) \rightarrow Q(x)) \vdash \forall x P(x) \rightarrow \forall x Q(x)$
(b) $\vdash \exists x \forall y P(x, y) \rightarrow \forall y \exists x P(x, y)$ (10 points)
(c) $\exists x A(x) \rightarrow B \vdash \forall x(A(x) \rightarrow B)$, assuming x does not occur free in B.

Solution.

(a) Assume w does not occur free both in $P(x)$ and in $Q(x)$.

$$
\begin{aligned}
& \frac{P(w) \vdash P(w)}{P x i o m} \frac{P(w), P(w) \vdash Q(w)}{P(x)[w] \rightarrow Q(x)[w / x], P(x)[w / x] \vdash Q(w)} \rightarrow: L \\
& \frac{\forall x(P(x) \rightarrow Q(x)), \forall x P(x) \vdash Q(x)[w / x]}{\forall x(P(x) \rightarrow Q(x)), \forall x P(x) \vdash \forall x Q(x)} \forall: L \\
& \left.\frac{\forall x(P(x) \rightarrow Q(x)) \vdash \forall x P(x) \rightarrow \forall x Q(x)}{\forall x}\right)
\end{aligned}
$$

(b) Assume both w and z do not occur free in $P(x, y)$.

$$
\begin{gathered}
\frac{P(z, y)[w / y]\{=P(z, w)\} \vdash P(z, w)}{\forall y P(z, y) \vdash P(x, w)[z / x]} \forall: L \\
\frac{\frac{(\forall y P(x, y))[z / x] \vdash \exists x P(x, w)}{\exists x \forall y P(x, y) \vdash(\exists x P(x, y))[w / y]} \exists:}{\exists} \mathrm{B} \\
\frac{\exists: R}{\exists x \forall y P(x, y) \vdash \forall y \exists x P(x, y)} \rightarrow: R
\end{gathered}
$$

(c) Assume w does not occur free both in $A(x)$ and in B.

$$
\begin{gathered}
\frac{\frac{A(w) \vdash A(w)}{A(w) \vdash \exists x A(x)}_{A x i o m} \exists: R \quad \frac{A(w), B \vdash B}{\text { Axiom }}}{\frac{\exists x A(x) \rightarrow B, A(w) \vdash B}{\exists x A(x) \rightarrow B \vdash A(w) \rightarrow B} \rightarrow: R} \text { } \rightarrow: L \\
\quad \frac{\exists x A(x) \rightarrow B \vdash \forall x(A(x) \rightarrow B)}{} \quad R
\end{gathered}
$$

2. Prove, using Natural Deduction, the validity of the following sequents:
(a) $\forall x(P(x) \rightarrow Q(x)) \vdash \forall x P(x) \rightarrow \forall x Q(x)$
(10 points)
(b) $\vdash \exists x \forall y P(x, y) \rightarrow \forall y \exists x P(x, y)$
(c) $\forall x(A(x) \rightarrow B) \vdash \exists x A(x) \rightarrow B$, assuming x does not occur free in B.

Solution.
(a) Assume w does not occur free both in $P(x)$ and in $Q(x)$.

$$
\frac{\alpha^{\frac{\forall x(P(x) \rightarrow Q(x)), \forall x P(x) \vdash \forall x P(x)}{\forall x(P(x) \rightarrow Q(x)), \forall x P(x) \vdash P(w)}}{ }^{\frac{\forall y p}{\forall x(P(x) \rightarrow Q(x)), \forall x P(x) \vdash Q(w)}} \forall E \text { E }}{\frac{\forall x(P(x) \rightarrow Q(x)), \forall x P(x) \vdash \forall x Q(x)}{\forall x(P(x) \rightarrow Q(x)) \vdash \forall x P(x) \rightarrow \forall x Q(x)}} \rightarrow I
$$

α :
(b) Assume both w and z do not occur free in $P(x, y)$.
(c) Assume w does not occur free both in $A(x)$ and in B.

$$
\frac{\forall x(A(x) \rightarrow B), \exists x A(x) \vdash \exists x A(x)}{}{ }^{\forall y p} \quad \alpha{ }_{\frac{\forall x(A(x) \rightarrow B), \exists x A(x) \vdash B}{\forall x(A(x) \rightarrow B) \vdash \exists x A(x) \rightarrow B}}^{\forall I}
$$

α :

$$
\frac{\frac{\forall x(A(x) \rightarrow B), \exists x A(x), A(w) \vdash \forall x(A(x) \rightarrow B)}{\forall x(A(x) \rightarrow B), \exists x A(x), A(w) \vdash A(w) \rightarrow B}_{\frac{\forall y p}{\forall x(A(x) \rightarrow B), \exists x A(x), A(w) \vdash B}}^{\forall E} \quad \beta}{} \quad \text { 位 }
$$

$\beta:$

$$
\overline{\forall x(A(x) \rightarrow B), \exists x A(x), A(w) \vdash A(w)} H y p
$$

3. Prove, using Natural Deduction for the first-order logic with equality $(=)$, that $=$ is an equivalence relation between terms, i.e., the following are valid sequents, in addition to the obvious " $\vdash t=t$ " (Reflexivity), which follows from the $=$-Introduction rule.
(a) $t_{2}=t_{1} \vdash t_{1}=t_{2}$ (Symmetry)
(b) $t_{1}=t_{2}, t_{2}=t_{3} \vdash t_{1}=t_{3}$ (Transitivity)

Solution.
(a)

$$
\begin{aligned}
& \overline{t_{2}=t_{1} \vdash t_{2}=t_{1}} H y p \quad \overline{t_{2}=t_{1} \vdash t_{2}=t_{2}} \\
& \hline t_{2}=t_{1} \vdash t_{1}=t_{2}=I \\
&
\end{aligned}
$$

(b)

$$
\frac{\overline{t_{1}=t_{2}, t_{2}=t_{3} \vdash t_{2}=t_{3}} H y p \quad \overline{t_{1}=t_{2}, t_{2}=t_{3} \vdash t_{1}=t_{2}}}{t_{1}=t_{2}, t_{2}=t_{3} \vdash t_{1}=t_{3}}=E
$$

4. Taking the preceding valid sequents as axioms, prove using Natural Deduction the following derived rules for equality.
(a) $\frac{\Gamma \vdash t_{2}=t_{1}}{\Gamma \vdash t_{1}=t_{2}}(=$ Symmetry $)$
(b) $\frac{\Gamma \vdash t_{1}=t_{2} \quad \Gamma \vdash t_{2}=t_{3}}{\Gamma \vdash t_{1}=t_{3}}(=$ Transitivity $)$

Solution.

(a)

$$
\begin{array}{cc}
\frac{\overline{\Gamma, t_{2}=t_{1} \vdash t_{1}=t_{2}} \text { Axiom(Symmetry) }}{\overline{\Gamma \vdash t_{2}=t_{1} \rightarrow t_{1}=t_{2}} \rightarrow I} & \Gamma \vdash t_{2}=t_{1} \\
\Gamma \vdash t_{1}=t_{2} &
\end{array}
$$

(b)

$$
\left.\begin{array}{r}
\frac{\alpha \quad \Gamma \vdash t_{1}=t_{2}}{\Gamma \vdash t_{2}=t_{3} \rightarrow t_{1}=t_{3}} \rightarrow E \\
\Gamma \vdash t_{1}=t_{3}
\end{array} \Gamma \vdash t_{2}=t_{3}\right) \rightarrow E
$$

α :

$$
\begin{aligned}
& \frac{\overline{\Gamma, t_{1}=t_{2}, t_{2}=t_{3} \vdash t_{1}=t_{3}} \operatorname{Axiom(Transitivity)}}{\Gamma, t_{1}=t_{2} \vdash t_{2}=t_{3} \rightarrow t_{1}=t_{3}} \rightarrow I \\
& \Gamma \vdash t_{1}=t_{2} \rightarrow\left(t_{2}=t_{3} \rightarrow t_{1}=t_{3}\right)
\end{aligned} I
$$

