First-Order Logic

(Based on [Gallier 1986], [Goubault-Larrecq and Mackie 1997], and [Huth and Ryan 2004])

Yih-Kuen Tsay
Dept. of Information Management
National Taiwan University

Introduction

Logic concerns mainly two concepts: truth and provability (of truth from assumed truth).

- Formal (symbolic) logic approaches logic by rules for manipulating symbols:
e Syntax rules: for writing statements (or formulae).
* Semantic rules: for giving meanings (truth values) to statements.
. Inference rules: for obtaining true statements from other true statements.
- We shall introduce two main branches of formal logic: propositional logic and first-order logic.
The following slides cover first-order logic.

Predicates

- A predicate is a "parameterized" statement that, when supplied with actual arguments, is either true or false such as the following:
Leslie is a teacher.
Chris is a teacher.
Leslie is a pop singer.
Chris is a pop singer.
Like propositions, simplest (atomic) predicates may be combined to form compound predicates.

Inferences

- We are given the following assumptions:

For any person, either the person is not a teacher or the person is not rich.

* For any person, if the person is a pop singer, then the person is rich.
- We wish to conclude the following:

For any person, if the person is a teacher, then the person is not a pop singer.

Symbolic Predicates

- Like propositions, predicates are represented by symbols.
e $p(x): x$ is a teacher.
$q(x): x$ is rich.
er $r(y): y$ is a pop singer.
- Compound predicates can be expressed:

For all $x, r(x) \rightarrow q(x)$: For any person, if the person is a pop singer, then the person is rich.

* For all $y, p(y) \rightarrow \neg r(y)$: For any person, if the person is a teacher, then the person is not a pop singer.

Symbolic Inferences

- We are given the following assumptions:

For all $x, \neg p(x) \vee \neg q(x)$.
For all $x, r(x) \rightarrow q(x)$.

- We wish to conclude the following:

For all $x, p(x) \rightarrow \neg r(x)$.
To check the correctness of the inference above, we ask:
Is $(($ for all $x, \neg p(x) \vee \neg q(x)) \wedge($ for all $x, r(x) \rightarrow q(x))) \rightarrow$ (for all $x, p(x) \rightarrow \neg r(x)$) valid?

First-Order Logic: Syntax

- Logical symbols:

A countable set V of variables: x, y, z, \ldots;
: Logical connectives (operators): $\neg, \wedge, \vee, \rightarrow, \leftrightarrow, \perp, \forall$ (for all), \exists (there exists);

* Auxiliary symbols: "(", ")".
- Non-logical symbols:

A countable set of function symbols with associated ranks (arities);

* A countable set of constants;

A countable set of predicate symbols with associated ranks (arities);

- We refer to a first-order language as Language L, where L is the set of non-logical symbols (e.g., $\{+, 0,1,<\}$).

First-Order Logic: Syntax (cont.)

Terms:
Every constant and every variable is a term.
If $t_{1}, t_{2}, \cdots, t_{k}$ are terms and f is a k-ary function symbol ($k>0$), then $f\left(t_{1}, t_{2}, \cdots, t_{k}\right)$ is a term.

- Atomic formulae:

Every predicate symbol of 0 -arity is an atomic formula and so is \perp.
If $t_{1}, t_{2}, \cdots, t_{k}$ are terms and p is a k-ary predicate symbol $(k>0)$, then $p\left(t_{1}, t_{2}, \cdots, t_{k}\right)$ is an atomic formula.
For example, consider Language $\{+, 0,1,<\}$.
. $0, x, x+1, x+(x+1)$, etc. are terms.
e $0<1, x<(x+1)$, etc. are atomic formulae.

First-Order Logic: Syntax (cont.)

- Formulae:

Every atomic formula is a formula.
If A and B are formulae, then so are $\neg A,(A \wedge B)$, $(A \vee B),(A \rightarrow B)$, and $(A \leftrightarrow B)$.
. If x is a variable and A is a formula, then so are $\forall x A$ and $\exists x A$.

- First-order logic with equality includes equality (=) as an additional logical symbol, which behaves like a predicate symbol.
- Example formulae in Language $\{+, 0,1,<\}$:
, $(0<x) \vee(x<1)$
. $\forall x(\exists y(x+y=0))$

First-Order Logic: Syntax (cont.)

- We may give the logical connectives different binding powers, or precedences, to avoid excessive parentheses, usually in this order:

$$
\neg,\{\forall, \exists\},\{\wedge, \vee\}, \rightarrow, \leftrightarrow .
$$

For example, $(A \wedge B) \rightarrow C$ becomes $A \wedge B \rightarrow C$.

- Common Abbreviations:
$x=y=z$ means $x=y \wedge y=z$.
$p \rightarrow q \rightarrow r$ means $p \rightarrow(q \rightarrow r)$. Implication associates to the right, so do other logical symbols.
曹 $\forall x, y, z A$ means $\forall x(\forall y(\forall z A))$.

Free and Bound Variables

- In a formula $\forall x A$ (or $\exists x A$), the variable x is bound by the quantifier \forall (or \exists).
A free variable is one that is not bound.
- The same variable may have both a free and a bound occurrence.
- For example, consider
$(\forall x(R(x, \underline{y}) \rightarrow P(x)) \wedge \forall y(\neg R(\underline{x}, y) \wedge \forall x P(x)))$.
The underlined occurrences of x and y are free, while others are bound.
- A formula is closed, also called a sentence, if it does not contain a free variable.

Free Variables Formally Defined

For a term t, the set $F V(t)$ of free variables of t is defined inductively as follows:

- $F V(x)=\{x\}$, for a variable x;
- $F V(c)=\emptyset$, for a contant c;
- $F V\left(f\left(t_{1}, t_{2}, \cdots, t_{n}\right)\right)=F V\left(t_{1}\right) \cup F V\left(t_{2}\right) \cup \cdots \cup F V\left(t_{n}\right)$, for an n-ary function f applied to n terms $t_{1}, t_{2}, \cdots, t_{n}$.

Free Variables Formally Defined (cont.)

For a formula A, the set $F V(A)$ of free variables of A is defined inductively as follows:
$F V\left(P\left(t_{1}, t_{2}, \cdots, t_{n}\right)\right)=F V\left(t_{1}\right) \cup F V\left(t_{2}\right) \cup \cdots \cup F V\left(t_{n}\right)$, for an n-ary predicate P applied to n terms $t_{1}, t_{2}, \cdots, t_{n}$;

- $F V\left(t_{1}=t_{2}\right)=F V\left(t_{1}\right) \cup F V\left(t_{2}\right)$;
- $F V(\neg B)=F V(B)$;
$F V(B * C)=F V(B) \cup F V(C)$, where $* \in\{\wedge, \vee, \rightarrow, \leftrightarrow\} ;$
- $F V(\perp)=\emptyset$;
- $F V(\forall x B)=F V(B)-\{x\}$;
- $F V(\exists x B)=F V(B)-\{x\}$.

Bound Variables Formally Defined

For a formula A, the set $B V(A)$ of bound variables in A is defined inductively as follows:
$B V\left(P\left(t_{1}, t_{2}, \cdots, t_{n}\right)\right)=\emptyset$, for an n-ary predicate P applied to n terms $t_{1}, t_{2}, \cdots, t_{n}$;

- $B V\left(t_{1}=t_{2}\right)=\emptyset$;
- $B V(\neg B)=B V(B)$;
$B V(B * C)=B V(B) \cup B V(C)$, where $* \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$;
- $B V(\perp)=\emptyset$;
- $B V(\forall x B)=B V(B) \cup\{x\}$;
- $B V(\exists x B)=B V(B) \cup\{x\}$.

Substitutions

Let t be a term and A a formula.
The result of substituting t for a free variable x in A is denoted by $A[t / x]$.

- Consider $A=\forall x(P(x) \rightarrow Q(x, f(y)))$.

When $t=g(y), A[t / y]=\forall x(P(x) \rightarrow Q(x, f(g(y))))$.
For any $t, A[t / x]=\forall x(P(x) \rightarrow Q(x, f(y)))=A$, since there is no free occurrence of x in A.

- A substitution is admissible if no free variable of t would become bound after the substitution.
- For example, when $t=g(x, y), A[t / y]$ is not admissible, as the free variable x of t would become bound.

Substitutions Formally Defined

Let s and t be terms. The result of substituting t in s for a variable x, denoted $s[t / x]$, is defined inductively as follows:

- $x[t / x]=t$;
$y[t / x]=y$, for a variable y that is not x;
$c[t / x]=c$, for a contant c;
- $f\left(t_{1}, t_{2}, \cdots, t_{n}\right)[t / x]=f\left(t_{1}[t / x], t_{2}[t / x], \cdots, t_{n}[t / x]\right)$, for an n-ary function f applied to n terms $t_{1}, t_{2}, \cdots, t_{n}$.

Substitutions Formally Defined (cont.)

For a formula $A, A[t / x]$ is defined inductively as follows:

- $P\left(t_{1}, t_{2}, \cdots, t_{n}\right)[t / x]=P\left(t_{1}[t / x], t_{2}[t / x], \cdots, t_{n}[t / x]\right)$, for an n-ary predicate P applied to n terms $t_{1}, t_{2}, \cdots, t_{n}$;
$\left(t_{1}=t_{2}\right)[t / x]=\left(t_{1}[t / x]=t_{2}[t / x]\right)$;
- $(\neg B)[t / x]=\neg B[t / x]$;
$(B * C)[t / x]=(B[t / x] * C[t / x])$, where $* \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$;
$\perp[t / x]=\perp$;
$(\forall x B)[t / x]=(\forall x B)$;
$(\forall y B)[t / x]=(\forall y B[t / x])$, if variable y is not x;
$(\exists x B)[t / x]=(\exists x B)$;
$(\exists y B)[t / x]=(\exists y B[t / x])$, if variable y is not x;

First-Order Structures

A first-order structure \mathcal{M} is a pair (M, I), where
e M (a non-empty set) is the domain of the structure, and
Q I is the interpretation function, that assigns functions and predicates over M to the function and predicate symbols.

- An interpretation may be represented by simply listing the functions and predicates.
- For instance, $\left(Z,\left\{+_{Z}, 0_{Z}\right\}\right)$ is a structure for the language $\{+, 0\}$. The subscripts are omitted, as $(Z,\{+, 0\})$, when no confusion may arise.

Semantics of First-Order Logic

- Since a formula may contain free variables, its truth value depends on the specific values that are assigned to these variables.
- Given a first-order language and a structure $\mathcal{M}=(M, I)$, an assignment is a function from the set of variables to M.
The structure \mathcal{M} along with an assignment s determines the truth value of a formula A, denoted as $A_{\mathcal{M}}[s]$.
- For example, $(x+0=x)_{(Z,\{+, 0\})}[x:=1]$ evaluates to T.

Semantics of First-Order Logic (cont.)

- We say $\mathcal{M}, s \models A$ when $A_{\mathcal{M}}[s]$ is T (true) and $\mathcal{M}, s \not \vDash A$ otherwise.
- Alternatively, \models may be defined as follows (propositional part is as in propositional logic):

$$
\begin{aligned}
\mathcal{M}, s \models \forall x A & \Longleftrightarrow \mathcal{M}, s[x:=m] \models A \text { for all } m \in M . \\
\mathcal{M}, s \models \exists x A & \Longleftrightarrow \mathcal{M}, s[x:=m] \models A \text { for some } m \in M .
\end{aligned}
$$

where $s[x:=m]$ denotes an updated assignment s^{\prime} from s such that $s^{\prime}(y)=s(y)$ for $y \neq x$ and $s^{\prime}(x)=m$.

- For example, $(Z,\{+, 0\}), s \models \forall x(x+0=x)$ holds, since $(Z,\{+, 0\}), s[x:=m] \models x+0=x$ for all $m \in Z$.

Satisfiability and Validity

- A formula A is satisfiable in \mathcal{M} if there is an assignment s such that $\mathcal{M}, s \models A$.
- A formula A is valid in \mathcal{M}, denoted $\mathcal{M} \models A$, if $\mathcal{M}, s \models A$ for every assignment s.
For instance, $\forall x(x+0=x)$ is valid in $(Z,\{+, 0\})$.
- \mathcal{M} is called a model of A if A is valid in \mathcal{M}.
- A formula A is valid if it is valid in every structure, denoted $\models A$.

Relating the Quantifiers

Lemma.

$$
\begin{aligned}
& \models \neg \forall x A \leftrightarrow \exists x \neg A \\
& \models \neg \exists x A \leftrightarrow \forall x \neg A \\
& \models \forall x A \leftrightarrow \neg \exists x \neg A \\
& \models \exists x A \leftrightarrow \neg \forall x \neg A
\end{aligned}
$$

Note: These equivalences show that, with the help of negation, either quantifier can be expressed by the other.

The Sequent Calculus: Quantifier Rules

$$
\begin{array}{ll}
\frac{\Gamma, A[t / x] \vdash \Delta}{\Gamma, \forall x A \vdash \Delta}(\forall L) & \frac{\Gamma \vdash A[y / x], \Delta}{\Gamma \vdash \forall x A, \Delta}(\forall R) \\
\frac{\Gamma, A[y / x] \vdash \Delta}{\Gamma, \exists x A \vdash \Delta}(\exists L) & \frac{\Gamma \vdash A[t / x], \Delta}{\Gamma \vdash \exists x A, \Delta}(\exists R)
\end{array}
$$

In the rules above, we assume that all substitutions are admissible, y is not free in A, and y does not occur free in the lower sequent.

Soundness and Completeness

The quantifier rules, together with the structural rules, logical rules, and axioms introduced in Part I (Propositional Logic), constitute Gentzen's System LK.

Theorem.
System $L K$ is sound, i.e., if a sequent $\Gamma \vdash \Delta$ is provable in $L K$, then $\Gamma \vdash \Delta$ is valid.

Theorem.
System $L K$ is complete, i.e., if a sequent $\Gamma \vdash \Delta$ is valid, then $\Gamma \vdash \Delta$ is provable in $L K$.

Note: assume no equality in the logic language.

Compactness

Theorem.

For any (possibly infinite) set Γ of formulae, if every finite non-empty subset of Γ is satisfiable then Γ is satisfiable.

Consistency

Recall that a set Γ of formulae is consistent if there exists some formula B such that the sequent $\Gamma \vdash B$ is not provable. Otherwise, Γ is inconsistent.

> Lemma.
> For System $L K$, a set Γ of formulae is inconsistent if and only if there is some formula A such that both $\Gamma \vdash A$ and $\Gamma \vdash \neg A$ are provable.

Theorem.

For System $L K$, a set Γ of formulae is satisfiable if and only if Γ is consistent.

NTU

The Sequent Calculus: Axioms for Equality

Let $t, s_{1}, \cdots, s_{n}, t_{1}, \cdots, t_{n}$ be arbitrary terms.

$$
\overline{\vdash t=t}
$$

For every n-ary function f,

$$
s_{1}=t_{1}, \cdots, s_{n}=t_{n} \vdash f\left(s_{1}, \cdots, s_{n}\right)=f\left(t_{1}, \cdots, t_{n}\right)
$$

For every n-ary predicate P (including $=$),

$$
s_{1}=t_{1}, \cdots, s_{n}=t_{n}, P\left(s_{1}, \cdots, s_{n}\right) \vdash P\left(t_{1}, \cdots, t_{n}\right)
$$

Note: The = sign is part of the object language, not a meta symbol.

Assume a fixed first-order language.
A set S of sentences is closed under provability if $S=\{A \mid A$ is a sentence and $S \vdash A$ is provable $\}$.

A set of sentences is called a theory if it is closed under provability.
A theory is typically represented by a smaller set of sentences, called its axioms.

Group as a First-Order Theory

The set of non-logical symbols is $\{\cdot, e\}$, where \cdot is a binary function (operation) and e is a constant (the identity).

- Axioms:

$$
\begin{aligned}
& \forall a, b, c(a \cdot(b \cdot c)=(a \cdot b) \cdot c) \\
& \forall a(a \cdot e=e \cdot a=a) \\
& \forall a(\exists b(a \cdot b=b \cdot a=e))
\end{aligned}
$$

(Associativity)
(Inverse)
($Z,\{+, 0\}$) and $(Q \backslash\{0\},\{\times, 1\})$ are models of the theory.

- Additional axiom for Abelian groups:
$\forall a, b(a \cdot b=b \cdot a)$
(Commutativity)

Quantifier Rules of Natural Deduction

$$
\left.\begin{array}{c}
\frac{\Gamma \vdash A[y / x]}{\Gamma \vdash \forall x A}(\forall I) \\
\frac{\Gamma \vdash A[t / x]}{\Gamma \vdash \exists x A}(\exists I) \quad \frac{\Gamma \vdash \forall x A}{\Gamma \vdash A[t / x]}(\forall E) \\
\Gamma \vdash \exists x A \quad \Gamma, A[y / x] \vdash B \\
\Gamma \vdash B
\end{array} \exists E\right)
$$

In the rules above, we assume that all substitutions are admissible and y does not occur free in Γ or A.

Equality Rules of Natural Deduction

Let t, t_{1}, t_{2} be arbitrary terms; again, assume all substitutions are admissible.

$$
\overline{\Gamma \vdash t=t}(=I) \quad \frac{\Gamma \vdash t_{1}=t_{2} \quad \Gamma \vdash A\left[t_{1} / x\right]}{\Gamma \vdash A\left[t_{2} / x\right]}(=E)
$$

Note: The = sign is part of the object language, not a meta symbol.

