Predicate Transformers
 (Based on [Dijkstra 1975; Gries 1981; Morgan 1994])

Yih-Kuen Tsay

Dept. of Information Management National Taiwan University

Basic Idea

The execution of a sequential program, if terminating, transforms the initial state into some final state.

- If, for any given postcondition, we know
the weakest precondition that guarantees termination of the program in a state satisfying the postcondition, then we have fully understood the meaning of the program.

Note: the weakest precondition is the weakest in the sense that it identifies all the desired initial states and nothing else.

The Predicate Transformer $w p$

- For a program S and a predicate (or an assertion) Q, let wp (S, Q) denote the aformentioned weakest precondition.
- Therefore, we can see a program as a predicate transformer wp (S, \cdot), transforming a postcondition Q (a predicate) into its weakest precondition $w p(S, Q)$.
- If the execution of S starts in a state satisfying $w p(S, Q)$, it is guaranteed to terminate and result in a state satisfying Q.

Note: there is a weaker variant of $w p$, called $w l p$ (weakest liberal precondition), which is defined almost identical to $w p$ except that termination is not guaranteed.

Notational Conventions

\Rightarrow vs. \rightarrow
. $A \Rightarrow B$ (A entails B) states a relation between two formulae A and B : in every state, if A is true then B is true.
䟭 $A \rightarrow B$ is a formula. When " $A \rightarrow B$ " stands alone, it usually means $A \rightarrow B$ is true in every state (model).
○vs. \leftrightarrow

* $A \equiv B$ (A is equivalent to B) states a relation between two formulae A and B : in every state, if A is true if and only if B is true.
e $A \leftrightarrow B$ is a formula. When " $A \leftrightarrow B$ " stands alone, it usually means $A \leftrightarrow B$ is true in every state (model).

Hoare Triples in Terms of $w p$

When total correctness is meant, $\{P\} S\{Q\}$ can be understood as saying $P \Rightarrow w p(S, Q)$.

- In fact, with a suitable formal definition, wp provides a semantic foundation for the Hoare logic.
- The precondition P here may be as weak as $w p(S, Q)$, but often a stronger and easier-to-find P is all that is needed.

Properties of $w p$

Fundamental Properties (Axioms):

- Law of the Excluded Miracle: wp (S, false) \equiv false
- Distributivity of Conjunction:
$w p\left(S, Q_{1}\right) \wedge w p\left(S, Q_{2}\right) \equiv w p\left(S, Q_{1} \wedge Q_{2}\right)$
- Distributivity of Disjunction for deterministic S :
$w p\left(S, Q_{1}\right) \vee w p\left(S, Q_{2}\right) \equiv w p\left(S, Q_{1} \vee Q_{2}\right)$
Derived Properties:
Law of Monotonicity: if $Q_{1} \Rightarrow Q_{2}$, then
$w p\left(S, Q_{1}\right) \Rightarrow w p\left(S, Q_{2}\right)$
- Distributivity of Disjunction for nondeterministic S :
$w p\left(S, Q_{1}\right) \vee w p\left(S, Q_{2}\right) \Rightarrow w p\left(S, Q_{1} \vee Q_{2}\right)$

Predicate Calculation

- Equivalence is preserved by substituting equals for equals
- Example:

$$
\begin{aligned}
& (A \vee B) \rightarrow C \\
\equiv & \{A \rightarrow B \equiv \neg A \vee B\} \\
& \neg(A \vee B) \vee C \\
\equiv & \{\text { de Morgan's law }\} \\
& (\neg A \wedge \neg B) \vee C
\end{aligned}
$$

\equiv \{distributive law \}

$$
\begin{aligned}
& (\neg A \vee C) \wedge(\neg B \vee C) \\
& \equiv \\
& \{A \rightarrow B \equiv \neg A \vee B\} \\
& (A \rightarrow C) \wedge(B \rightarrow C)
\end{aligned}
$$

Predicate Calculation (cont.)

- Entailment distributes over conjunction, disjunction, quantification, and the consequence of an implication.
- Example:

$$
\begin{aligned}
& \forall x(A \rightarrow B) \wedge \forall x A \\
\Rightarrow \quad & \{\forall x(A \rightarrow B) \Rightarrow(\forall x A \rightarrow \forall x B)\} \\
& (\forall x A \rightarrow \forall x B) \wedge \forall x A \\
\equiv & (\neg \forall x A \vee \forall x B) \wedge \forall x A \\
\equiv & (\neg \forall x A \wedge \forall x A) \vee(\forall x B \wedge \forall x A) \\
\equiv & \{\neg A \wedge A \equiv \text { false }\} \\
& \text { false } \vee(\forall x B \wedge \forall x A) \\
\equiv & \{\text { false } \vee A \equiv A\} \\
& \forall x B \wedge \forall x A \\
\Rightarrow & \forall x B
\end{aligned}
$$

Some Laws for Predicate Calculation

Equivalence is commutative and associative
$A \leftrightarrow B \equiv B \leftrightarrow A$
$A \leftrightarrow(B \leftrightarrow C) \equiv(A \leftrightarrow B) \leftrightarrow C$
false $\vee A \equiv A \vee$ false $\equiv A$
$\neg A \wedge A \equiv$ false
$A \rightarrow B \equiv \neg A \vee B$

- $A \rightarrow$ false $\equiv \neg A$
$(A \vee B) \rightarrow C \equiv(A \rightarrow C) \wedge(B \rightarrow C)$
$A \rightarrow(B \rightarrow C) \equiv(A \wedge B) \rightarrow C$
$A \rightarrow B \equiv A \leftrightarrow(A \wedge B)$
- $A \wedge B \Rightarrow A$

Some Laws for Predicate Calculation (cont.)

$\forall x(x=E \rightarrow A) \equiv A[E / x] \equiv \exists x(x=E \wedge A)$, if x is not free in E.

- $\forall x(A \wedge B) \equiv \forall x A \wedge \forall x B$
- $\forall x(A \rightarrow B) \Rightarrow \forall x A \rightarrow \forall x B$
- $\forall x(A \rightarrow B) \equiv A \rightarrow \forall x B$, if x is not free in A.
$\exists x(A \wedge B) \equiv A \wedge \exists x B$, if x is not free in A.

"Extreme" Programs

- $w p(\operatorname{skip}, Q) \triangleq Q$
- $w p($ choose $x, x \in \operatorname{Dom}(x)) \triangleq$ true
- $w p($ choose $x, Q) \triangleq Q$, if x is not free in Q
- $w p($ abort,$Q) \triangleq$ false

The Assignment Statement

- Syntax: $x:=E$

Note: this becomes a multiple assignment, if we view x as a list of distinct variables and E as a list of expressions.

Semantics: $w p(x:=E, Q) \triangleq Q[E / x]$.

Sequencing

- Syntax: $S_{1} ; S_{2}$

- Semantics: $w p\left(S_{1} ; S_{2}, Q\right) \triangleq w p\left(S_{1}, w p\left(S_{2}, Q\right)\right)$.

Abbreviation of Conjunctions/Disjunctions

- Conjunction:

Original Form: $B_{1} \wedge B_{2} \wedge \cdots \wedge B_{n}$
Abbreviation: $\forall i: 1 \leq i \leq n: B_{i}$

- Disjunction:

Original Form: $B_{1} \vee B_{2} \vee \cdots \vee B_{n}$
Abbreviation: $\exists i: 1 \leq i \leq n: B_{i}$
This applies to conjuctions/disjunctions of first-order formulae, Hoare triples, etc.

The Alternative Statement

Syntax:
IF: if $B_{1} \rightarrow S_{1}$
[] $B_{2} \rightarrow S_{2}$

$$
\left[B_{n} \rightarrow S_{n}\right.
$$

Each of the " $B_{i} \rightarrow S_{i}$ "s is a guarded command, where B_{i} is the guard (a boolean expression) and S_{i} the command (body).

- Informal description: One of the guarded commands, whose guard evaluates to true, is nondeterministically selected and the corresponding command executed. If none of the guards evaluates to true, then the execution aborts.

The Alternative Statement (cont.)

Syntax:

IF: if $B_{1} \rightarrow S_{1}$
[$B_{2} \rightarrow S_{2}$

$$
[] B_{n} \rightarrow S_{n}
$$

- Semantics:

$$
\begin{aligned}
w p(\mathrm{IF}, Q) \triangleq & \left(\exists i: 1 \leq i \leq n: B_{i}\right) \\
& \wedge \\
& \left(\forall i: 1 \leq i \leq n: B_{i} \rightarrow w p\left(S_{i}, Q\right)\right)
\end{aligned}
$$

- The case of simple IF:

$$
w p(\text { if } B \rightarrow S \mathrm{fi}, Q) \triangleq B \wedge(B \rightarrow w p(S, Q))
$$

The Alternative Statement (cont.)

Suppose there exists a predicate P such that

1. $P \Rightarrow\left(\exists i: 1 \leq i \leq n: B_{i}\right)$ and
2. $\forall i: 1 \leq i \leq n: P \wedge B_{i} \Rightarrow w p\left(S_{i}, Q\right)$.

Then $P \Rightarrow w p(\mathrm{IF}, Q)$.
The less obvious part is $P \Rightarrow\left(\forall i: 1 \leq i \leq n: B_{i} \rightarrow w p\left(S_{i}, Q\right)\right)$.

$$
\begin{aligned}
& \forall i: 1 \leq i \leq n:\left(P \wedge B_{i}\right) \rightarrow w p\left(S_{i}, Q\right) \\
\equiv & \forall i: 1 \leq i \leq n: P \rightarrow\left(B_{i} \rightarrow w p\left(S_{i}, Q\right)\right) \\
\equiv & P \rightarrow\left(\forall i: 1 \leq i \leq n: B_{i} \rightarrow w p\left(S_{i}, Q\right)\right)
\end{aligned}
$$

The Alternative Statement (cont.)

- Inference rule in the Hoare logic:

$$
\frac{P \Rightarrow\left(\exists i: 1 \leq i \leq n: B_{i}\right) \quad \forall i: 1 \leq i \leq n:\left\{P \wedge B_{i}\right\} S_{i}\{Q\}}{\{P\} \text { IF : if } B_{1} \rightarrow S_{1}\left[\cdots \cdots B_{n} \rightarrow S_{n} \text { fi }\{Q\}\right.}
$$

- This rule follows from the preceding theorem.
- The case of simple IF:

$$
\frac{P \Rightarrow B \quad\{P \wedge B\} S\{Q\}}{\{P\} \text { if } B \rightarrow S \text { fi }\{Q\}}
$$

The Iterative Statement

- Syntax:

DO: do $B_{1} \rightarrow S_{1}$

$$
\text { [] } \quad B_{2} \rightarrow S_{2}
$$

$$
\begin{aligned}
& {[]} \\
& \text { od }
\end{aligned} B_{n} \rightarrow S_{n}
$$

Each of the " $B_{i} \rightarrow S_{i}$ "s is a guarded command.

- Informal description: Choose (nondeterministically) a guard B_{i} that evaluates to true and execute the corresponding command S_{i}. If none of the guards evaluates to true, then the execution terminates.
The usual "while B do S od" can be defined as this simple while-loop: "do $B \rightarrow S$ od".

The Iterative Statement (cont.)

Let BB denote $\exists i: 1 \leq i \leq n: B_{i}$, i.e., $B_{1} \vee B_{2} \vee \cdots \vee B_{n}$.

- The DO statement is equivalent to
do $\mathrm{BB} \rightarrow \mathbf{i f} B_{1} \rightarrow S_{1}$

$$
\left[B_{2} \rightarrow S_{2}\right.
$$

$$
]_{\text {if }}^{\left[B_{n} \rightarrow S_{n}\right.}
$$

od
or simply do $\mathrm{BB} \rightarrow \mathrm{IF}$ od.
This suggests that we could have got by with just the simple while-loop.

The Iterative Statement (cont.)

- Again, let BB denote $\exists i: 1 \leq i \leq n: B_{i}$.

Let $H_{k}(Q), k \geq 0$, be defined as follows.

$$
\left\{\begin{array}{l}
H_{0}(Q) \triangleq \neg \mathrm{BB} \wedge Q \\
H_{k}(Q) \triangleq H_{0}(Q) \vee w p\left(\mathrm{IF}, H_{k-1}(Q)\right) \text { for } k>0
\end{array}\right.
$$

The predicate $H_{0}(Q)$ represents the set of states where execution of DO terminates immediately (0 iteration).
The predicate $H_{k}(Q)$, for $k>0$, represents the set of states where execution of DO terminates after at most k iterations.

- Semantics of DO:

$$
w p(\mathrm{DO}, Q) \triangleq\left(\exists k: 0 \leq k: H_{k}(Q)\right)
$$

A More Useful Theorem for DO

Suppose there exist a predicate P and an integervalued expression t such that

1. $\forall i: 1 \leq i \leq n: P \wedge B_{i} \Rightarrow w p\left(S_{i}, P\right)$,
2. $P \Rightarrow(t \geq 0)$, and
3. $\forall i: 1 \leq i \leq n: P \wedge B_{i} \wedge\left(t=t_{0}\right) \Rightarrow w p\left(S_{i}, t<t_{0}\right)$, where t_{0} is a rigid variable.
Then $P \Rightarrow w p(\mathrm{DO}, P \wedge \neg \mathrm{BB})$.

$$
\begin{aligned}
P & \equiv P \wedge(\exists k: 0 \leq k: t \leq k) & & (t \text { is finite }) \\
& \equiv \exists k: 0 \leq k: P \wedge t \leq k & & (k \text { is not free in } P) \\
& \Rightarrow \exists k: 0 \leq k: H_{k}(P \wedge \neg \mathrm{BB}) & & \left(P \wedge t \leq k \Rightarrow H_{k}(P \wedge \neg \mathrm{BB})\right) \\
& \equiv w p(\mathrm{DO}, P \wedge \neg \mathrm{BB}) & & (\text { def. of } \mathrm{DO})
\end{aligned}
$$

A More Useful Theorem for DO (cont.)

Proof of $P \wedge t \leq k \Rightarrow H_{k}(P \wedge \neg \mathrm{BB})$ is by induction on k.

- Will do this for the case of simple DO.

A Simplified Theorem for Simple DO

Suppose there exist a predicate P and an integervalued expression t such that

1. $P \wedge B \Rightarrow w p(S, P)$,
2. $P \Rightarrow(t \geq 0)$, and
3. $P \wedge B \wedge\left(t=t_{0}\right) \Rightarrow w p\left(S, t<t_{0}\right)$, where t_{0} is a rigid variable.
Then $P \Rightarrow w p($ do $B \rightarrow S$ od, $P \wedge \neg B)$.
This is to be contrasted by

$$
\frac{\{P \wedge B\} S\{P\} \quad\{P \wedge B \wedge t=Z\} S\{t<Z\}}{} \frac{P \Rightarrow(t \geq 0)}{\{P\} \text { while } B \text { do } S \text { od }\{P \wedge \neg B\}}
$$

A Simplified Theorem for Simple DO (cont.)

Proof of $P \wedge t \leq k \Rightarrow H_{k}(P \wedge \neg B)$ is by induction on k.
Recall, for simple DO,

$$
\left\{\begin{array}{l}
H_{0}(Q) \triangleq \neg B \wedge Q \\
H_{k}(Q) \triangleq H_{0}(Q) \vee w p\left(\text { if } B \rightarrow S \text { fi, } H_{k-1}(Q)\right) \text { for } k>0
\end{array}\right.
$$

A Simplified Theorem for Simple DO (cont.)

Base case: $P \wedge t \leq 0 \Rightarrow H_{0}(P \wedge \neg B)$, which is equivalent to $P \wedge t \leq 0 \Rightarrow P \wedge \neg B$.

Since $P \Rightarrow(t \geq 0)$, it suffices to show that $P \wedge t=0 \Rightarrow \neg B$.

$$
\begin{aligned}
& P \wedge t=0 \wedge B \\
\equiv & (P \wedge B) \wedge(P \wedge B \wedge t=0) \\
\Rightarrow & w p(S, P) \wedge w p(S, t<0) \\
\equiv & w p(S, P \wedge t<0) \\
\equiv & \text { wp }(S, \text { false }) \\
\equiv & \text { false }
\end{aligned}
$$

A Simplified Theorem for Simple DO (cont.)

- Inductive step $(k>0): P \wedge t \leq k \Rightarrow H_{k}(P \wedge \neg B)$, i.e., $P \wedge t \leq k \Rightarrow H_{0}(P \wedge \neg B) \vee w p\left(\right.$ if $\left.B \rightarrow S \mathbf{f i}, H_{k-1}(P \wedge \neg B)\right)$. Split $P \wedge t \leq k$ into three cases:

$$
\begin{aligned}
& P \wedge(t \leq k-1) \\
& P \wedge B \wedge(t=k) \\
& \Rightarrow B \wedge(B \rightarrow w p(S, P)) \wedge B \wedge(B \rightarrow w p(S, t<k)) \\
& \Rightarrow w p(\mathbf{i f} B \rightarrow S \text { fi, } P) \wedge w p(\mathbf{i f} B \rightarrow S \mathbf{f i}, t<k) \\
& \equiv w_{p}(\mathbf{i f} B \rightarrow S \mathbf{f i}, P \wedge t<k) \\
& \equiv w(\text { if } B \rightarrow S \mathbf{f i}, P \wedge(t \leq k-1)) \\
& \Rightarrow w p\left(\mathbf{i f} B \rightarrow S \text { fi, } H_{k-1}(P \wedge \neg B)\right) \\
& \Rightarrow H_{0}(P \wedge \neg B) \vee w p\left(\mathbf{i f} B \rightarrow S \mathbf{f i}, H_{k-1}(P \wedge \neg B)\right) \\
& P \wedge \neg B \wedge(t=k)
\end{aligned}
$$

Refinement

Syntax:

$$
\operatorname{prog}_{1} \sqsubseteq \operatorname{prog}_{2}
$$

which is read as " prog_{1} is refined by prog_{2} " or " prog_{2} refines $\operatorname{prog}_{1} "\left(\operatorname{prog}_{2} \sqsupseteq \operatorname{prog}_{1}\right)$.

- Informal description: intuitively, the refinement relation conveys the concept of program prog $_{2}$ being better than prog $_{1}$. Program prog $_{2}$ is better in the sense that it is more accurate, applies in more situations, or runs more efficiently.
- A program may be derived through a series of refinement steps.

Specifications

Syntax:
$w:[p r e, p o s t]$
where pre is the precondition, post is postcondition, and the " w " part is called the frame.

- Informal description: the specification describes an abstract program such that if the initial state satisfies the precondition pre, then it changes only variables listed in the frame and terminates in a final state satisfying the postcondition post.
- Examples:

```
e \(y:\left[0 \leq x \leq 9, y^{2}=x\right]\)
業 \(y\) : \(\left[0 \leq x, y^{2}=x \wedge y \geq 0\right]\)
```


Some Laws for Refinement

- strengthen postcondition: If post ${ }^{\prime} \Rightarrow$ post, then

$$
w:[\text { pre , post }] \sqsubseteq w:[\text { pre, post' }]
$$

Example:
$y:\left[0 \leq x \leq 9, y^{2}=x\right] \sqsubseteq y:\left[0 \leq x \leq 9, y^{2}=x \wedge y \geq 0\right]$
weaken precondition: If $p r e \Rightarrow$ pre ${ }^{\prime}$, then

$$
w:[\text { pre , post }] \sqsubseteq w:[\text { pre' }, \text { post }]
$$

Example:
$y:\left[0 \leq x \leq 9, y^{2}=x \wedge y \geq 0\right] \sqsubseteq y:\left[0 \leq x, y^{2}=x \wedge y \geq 0\right]$

- Combining the two refinements,

$$
y:\left[0 \leq x \leq 9, y^{2}=x\right] \sqsubseteq y:\left[0 \leq x, y^{2}=x \wedge y \geq 0\right]
$$

Some Laws for Refinement (cont.)

assignment: If $p r e \Rightarrow \operatorname{post}[E / x]$, then

$$
w, x:[p r e, p o s t] \sqsubseteq x:=E
$$

Note: w may (but not necessarily) be changed. sequential composition: For any predicate mid,

$$
w:[\text { pre, post }] \sqsubseteq w:[\text { pre, mid }] ; w:[\text { mid }, \text { post }]
$$

Semantics of Specification

- Syntax: w : $[p r e, p o s t]$
- Semantics:

$$
\text { wp }(w:[\text { pre }, \text { post }], Q) \triangleq \operatorname{pre} \wedge(\forall w(\text { post } \rightarrow Q))\left[v / v_{0}\right]
$$

where the substitution $\left[v / v_{0}\right]$ replaces all "initial" variables, i.e., v_{0}, by corresponding final variables. Note: initial variables v_{0} do not occur in Q.

- Example: $w p(x:=x \pm 1, Q) \equiv Q[x+1 / x] \wedge Q[x-1 / x]$

Semantics of Specification (cont.)

$$
\begin{aligned}
& w p(x:=x \pm 1, Q) \\
\equiv & w p\left(x:\left[\text { true }, x=x_{0}+1 \vee x=x_{0}-1\right], Q\right) \\
\equiv & \{\text { def. of specification }\}
\end{aligned}
$$

$$
\text { true } \wedge \forall x\left(\left(x=x_{0}+1 \vee x=x_{0}-1\right) \rightarrow Q\right)\left[x / x_{0}\right]
$$

$$
\equiv \forall x\left(\left(x=x_{0}+1 \rightarrow Q\right) \wedge\left(x=x_{0}-1 \rightarrow Q\right)\right)\left[x / x_{0}\right]
$$

$$
\equiv\left(\forall x\left(x=x_{0}+1 \rightarrow Q\right) \wedge \forall x\left(x=x_{0}-1 \rightarrow Q\right)\right)\left[x / x_{0}\right]
$$

$$
\equiv \forall x\left(x=x_{0}+1 \rightarrow Q\right)\left[x / x_{0}\right] \wedge \forall x\left(x=x_{0}-1 \rightarrow Q\right)\left[x / x_{0}\right]
$$

$$
\equiv \quad\{\forall x(x=E \rightarrow A) \equiv A[E / x]\}
$$

$$
\left(Q\left[x_{0}+1 / x\right]\right)\left[x / x_{0}\right] \wedge\left(Q\left[x_{0}-1 / x\right]\right)\left[x / x_{0}\right]
$$

$\equiv\left\{\mathrm{Q}\right.$ does not contain $\left.x_{0}\right\}$
$Q[x+1 / x] \wedge Q[x-1 / x]$

Semantics of Refinement

- Syntax: $\operatorname{prog}_{1} \sqsubseteq$ prog $_{2}$

Semantics: for all Q,

$$
w p\left(\operatorname{prog}_{1}, Q\right) \Rightarrow w p\left(\text { prog }_{2}, Q\right)
$$

Examples:

$$
\begin{aligned}
x:= & x \pm 1 \sqsubseteq x:=x+1 \\
& w p(x:=x \pm 1, Q) \\
\equiv & Q[x+1 / x] \wedge Q[x-1 / x] \\
\Rightarrow & Q[x+1 / x] \\
\equiv & w p(x:=x+1, Q) \\
x:= & x \pm 1 \sqsubseteq x:=x-1
\end{aligned}
$$

