Predicate Transformers (Based on [Dijkstra 1975; Gries 1981; Morgan 1994])

Yih-Kuen Tsay

Dept. of Information Management
National Taiwan University

Basic Idea

- The execution of a sequential program, if terminating, transforms the initial state into some final state.
- If, for any given postcondition, we know the weakest precondition that guarantees termination of the program in a state satisfying the postcondition,

then we have fully understood the meaning of the program.

Note: the weakest precondition is the weakest in the sense that it identifies all the desired initial states and nothing else.

The Predicate Transformer wp

- For a program S and a predicate (or an assertion) Q, let wp(S,Q) denote the aformentioned weakest precondition.
- Therefore, we can see a program as a *predicate* $transformer wp(S, \cdot)$, transforming a postcondition Q (a predicate) into its weakest precondition wp(S, Q).
- If the execution of S starts in a state satisfying wp(S,Q), it is guaranteed to terminate and result in a state satisfying Q.

Note: there is a weaker variant of wp, called wlp (weakest liberal precondition), which is defined almost identical to wp except that termination is not guaranteed.

Notational Conventions

- ightarrow \Rightarrow VS. \rightarrow
 - $A \Rightarrow B$ (A entails B) states a relation between two formulae A and B: in every state, if A is true then B is true.
 - $A \to B$ is a formula. When " $A \to B$ " stands alone, it usually means $A \to B$ is true in every state (model).
- \bigcirc \equiv VS. \leftrightarrow
 - $A \equiv B$ (A is equivalent to B) states a relation between two formulae A and B: in every state, if A is true if and only if B is true.
 - $A \leftrightarrow B$ is a formula. When " $A \leftrightarrow B$ " stands alone, it usually means $A \leftrightarrow B$ is true in every state (model).

Hoare Triples in Terms of wp

- When total correctness is meant, $\{P\}$ S $\{Q\}$ can be understood as saying $P \Rightarrow wp(S,Q)$.
- In fact, with a suitable formal definition, wp provides a semantic foundation for the Hoare logic.
- The precondition P here may be as weak as wp(S,Q), but often a stronger and easier-to-find P is all that is needed.

Properties of wp

Fundamental Properties (Axioms):

- **Solution** Law of the Excluded Miracle: $wp(S, false) \equiv false$
- Obstributivity of Conjunction: $wp(S, Q_1) \wedge wp(S, Q_2) \equiv wp(S, Q_1 \wedge Q_2)$
- Distributivity of Disjunction for deterministic S: $wp(S, Q_1) \vee wp(S, Q_2) \equiv wp(S, Q_1 \vee Q_2)$

Derived Properties:

- Law of Monotonicity: if $Q_1 \Rightarrow Q_2$, then $wp(S, Q_1) \Rightarrow wp(S, Q_2)$
- Distributivity of Disjunction for nondeterministic S: $wp(S,Q_1) \lor wp(S,Q_2) \Rightarrow wp(S,Q_1 \lor Q_2)$

Predicate Calculation

- Equivalence is preserved by substituting equals for equals
- Example:

$$(A \lor B) \to C$$

$$\equiv \{A \to B \equiv \neg A \lor B\}$$

$$\neg (A \lor B) \lor C$$

$$\equiv \{\text{de Morgan's law}\}$$

$$(\neg A \land \neg B) \lor C$$

$$\equiv \{\text{distributive law}\}$$

$$(\neg A \lor C) \land (\neg B \lor C)$$

$$\equiv \{A \to B \equiv \neg A \lor B\}$$

$$(A \to C) \land (B \to C)$$

Predicate Calculation (cont.)

- Entailment distributes over conjunction, disjunction, quantification, and the consequence of an implication.
- Example:

$$\forall x(A \to B) \land \forall xA$$

$$\Rightarrow \{ \forall x(A \to B) \Rightarrow (\forall xA \to \forall xB) \}$$

$$(\forall xA \to \forall xB) \land \forall xA$$

$$\equiv (\neg \forall xA \lor \forall xB) \land \forall xA$$

$$\equiv (\neg \forall xA \land \forall xA) \lor (\forall xB \land \forall xA)$$

$$\equiv \{ \neg A \land A \equiv false \}$$

$$false \lor (\forall xB \land \forall xA)$$

$$\equiv \{ false \lor A \equiv A \}$$

$$\forall xB \land \forall xA$$

Some Laws for Predicate Calculation

Equivalence is commutative and associative

$$A \leftrightarrow B \equiv B \leftrightarrow A$$

$$A \leftrightarrow (B \leftrightarrow C) \equiv (A \leftrightarrow B) \leftrightarrow C$$

- $\bigcirc A \wedge B \Rightarrow A$

Some Laws for Predicate Calculation (cont.)

- $\forall x(x=E \to A) \equiv A[E/x] \equiv \exists x(x=E \land A)$, if x is not free in E.

"Extreme" Programs

- $wp(\mathbf{choose}\ x, x \in \mathrm{Dom}(x)) \stackrel{\Delta}{=} true$
- $wp(\mathbf{choose}\ x, Q) \stackrel{\Delta}{=} Q$, if x is not free in Q

The Assignment Statement

- Syntax: x := ENote: this becomes a multiple assignment, if we view x as a list of distinct variables and E as a list of expressions.
- Semantics: $wp(x := E, Q) \stackrel{\Delta}{=} Q[E/x]$.

Sequencing

• Syntax: $S_1; S_2$

• Semantics: $wp(S_1; S_2, Q) \stackrel{\Delta}{=} wp(S_1, wp(S_2, Q))$.

Abbreviation of Conjunctions/Disjunctions

- Conjunction:
 - \clubsuit Original Form: $B_1 \wedge B_2 \wedge \cdots \wedge B_n$
 - * Abbreviation: $\forall i: 1 \leq i \leq n: B_i$
- Disjunction:
 - \clubsuit Original Form: $B_1 \lor B_2 \lor \cdots \lor B_n$
 - \clubsuit Abbreviation: $\exists i : 1 \leq i \leq n : B_i$
- This applies to conjuctions/disjunctions of first-order formulae, Hoare triples, etc.

The Alternative Statement

Syntax:

```
IF: if B_1 \rightarrow S_1
[] B_2 \rightarrow S_2
\cdots
[] B_n \rightarrow S_n
fi
```

Each of the " $B_i \rightarrow S_i$ "s is a guarded command, where B_i is the guard (a boolean expression) and S_i the command (body).

Informal description: One of the guarded commands, whose guard evaluates to true, is nondeterministically selected and the corresponding command executed. If none of the guards evaluates to true, then the execution aborts.

The Alternative Statement (cont.)

Syntax:

IF: **if**
$$B_1 \to S_1$$

$$[] B_2 \to S_2$$

$$\cdots$$

$$[] B_n \to S_n$$
fi

Semantics:

$$wp(\text{IF}, Q) \stackrel{\Delta}{=} (\exists i : 1 \le i \le n : B_i)$$

 $\land (\forall i : 1 \le i \le n : B_i \to wp(S_i, Q))$

The case of simple IF:

$$wp(\mathbf{if}\ B \to S\ \mathbf{fi}, Q) \stackrel{\Delta}{=} B \land (B \to wp(S, Q))$$

The Alternative Statement (cont.)

Suppose there exists a predicate *P* such that

- 1. $P \Rightarrow (\exists i : 1 \leq i \leq n : B_i)$ and
- **2.** $\forall i: 1 \leq i \leq n: P \wedge B_i \Rightarrow wp(S_i, Q)$.

Then $P \Rightarrow wp(IF, Q)$.

The less obvious part is $P \Rightarrow (\forall i : 1 \leq i \leq n : B_i \rightarrow wp(S_i, Q))$.

$$\forall i: 1 \leq i \leq n: (P \wedge B_i) \rightarrow wp(S_i, Q)$$

$$\equiv \forall i: 1 \leq i \leq n: P \rightarrow (B_i \rightarrow wp(S_i, Q))$$

$$\equiv P \rightarrow (\forall i : 1 \leq i \leq n : B_i \rightarrow wp(S_i, Q))$$

The Alternative Statement (cont.)

Inference rule in the Hoare logic:

$$P \Rightarrow (\exists i : 1 \le i \le n : B_i) \quad \forall i : 1 \le i \le n : \{P \land B_i\} \ S_i \ \{Q\}\}$$
$$\{P\} \ \text{IF} : \ \mathbf{if} \ B_1 \rightarrow S_1[] \cdots [] \ B_n \rightarrow S_n \ \mathbf{fi} \ \{Q\}$$

- This rule follows from the preceding theorem.
- The case of simple IF:

$$P \Rightarrow B \qquad \{P \land B\} \ S \ \{Q\}$$
$$\{P\} \ \mathbf{if} \ B \rightarrow S \ \mathbf{fi} \ \{Q\}$$

The Iterative Statement

Syntax:

Each of the " $B_i \rightarrow S_i$ "s is a guarded command.

- Informal description: Choose (nondeterministically) a guard B_i that evaluates to true and execute the corresponding command S_i . If none of the guards evaluates to true, then the execution terminates.
- The usual "while B do S od" can be defined as this simple while-loop: "do $B \rightarrow S$ od".

The Iterative Statement (cont.)

- Let BB denote $\exists i: 1 \leq i \leq n: B_i$, i.e., $B_1 \vee B_2 \vee \cdots \vee B_n$.
- The DO statement is equivalent to

do BB
$$\rightarrow$$
 if $B_1 \rightarrow S_1$

$$[]B_2 \rightarrow S_2$$

$$\cdots$$

$$[]B_n \rightarrow S_n$$
if

od

or simply do BB \rightarrow IF od.

This suggests that we could have got by with just the simple while-loop.

The Iterative Statement (cont.)

- Again, let BB denote $\exists i : 1 \leq i \leq n : B_i$.
- Let $H_k(Q)$, $k \ge 0$, be defined as follows.

$$\begin{cases} H_0(Q) & \stackrel{\triangle}{=} & \neg BB \land Q \\ H_k(Q) & \stackrel{\triangle}{=} & H_0(Q) \lor wp(IF, H_{k-1}(Q)) & \text{for } k > 0 \end{cases}$$

- The predicate $H_0(Q)$ represents the set of states where execution of DO terminates immediately (0 iteration).
- The predicate $H_k(Q)$, for k > 0, represents the set of states where execution of DO terminates after at most k iterations.
- Semantics of DO:

A More Useful Theorem for DO

Suppose there exist a predicate P and an integer-valued expression t such that

- **1.** $\forall i: 1 \leq i \leq n: P \wedge B_i \Rightarrow wp(S_i, P)$,
- 2. $P \Rightarrow (t \ge 0)$, and
- 3. $\forall i: 1 \leq i \leq n: P \wedge B_i \wedge (t=t_0) \Rightarrow wp(S_i, t < t_0),$ where t_0 is a rigid variable.

Then $P \Rightarrow wp(DO, P \land \neg BB)$.

$$P \equiv P \land (\exists k : 0 \le k : t \le k)$$
 (t is finite)
 $\equiv \exists k : 0 \le k : P \land t \le k$ (k is not free in P)
 $\Rightarrow \exists k : 0 \le k : H_k(P \land \neg BB)$ ($P \land t \le k \Rightarrow H_k(P \land \neg BB)$)
 $\equiv wp(DO, P \land \neg BB)$ (def. of DO)

A More Useful Theorem for DO (cont.)

- Proof of $P \wedge t \leq k \Rightarrow H_k(P \wedge \neg BB)$ is by induction on k.
- Will do this for the case of simple DO.

A Simplified Theorem for Simple DO

Suppose there exist a predicate P and an integer-valued expression t such that

- 1. $P \wedge B \Rightarrow wp(S, P)$,
- 2. $P \Rightarrow (t \ge 0)$, and
- 3. $P \wedge B \wedge (t = t_0) \Rightarrow wp(S, t < t_0)$, where t_0 is a rigid variable.

Then $P \Rightarrow wp(\mathbf{do}\ B \to S\ \mathbf{od}, P \land \neg B)$.

This is to be contrasted by

$$\{P \wedge B\} \ S \ \{P\} \qquad \{P \wedge B \wedge t = Z\} \ S \ \{t < Z\} \qquad P \Rightarrow (t \ge 0)$$

 $\{P\}$ while B do S od $\{P \land \neg B\}$

A Simplified Theorem for Simple DO (cont.)

Proof of $P \wedge t \leq k \Rightarrow H_k(P \wedge \neg B)$ is by induction on k.

Recall, for simple DO,

$$\begin{cases} H_0(Q) & \stackrel{\Delta}{=} & \neg B \land Q \\ H_k(Q) & \stackrel{\Delta}{=} & H_0(Q) \lor wp(\mathbf{if} \ B \to S \ \mathbf{fi}, H_{k-1}(Q)) \ \text{for } k > 0 \end{cases}$$

A Simplified Theorem for Simple DO (cont.)

Base case: $P \wedge t \leq 0 \Rightarrow H_0(P \wedge \neg B)$, which is equivalent to $P \wedge t \leq 0 \Rightarrow P \wedge \neg B$.

Since $P \Rightarrow (t \ge 0)$, it suffices to show that $P \wedge t = 0 \Rightarrow \neg B$.

$$P \wedge t = 0 \wedge B$$

$$\equiv (P \wedge B) \wedge (P \wedge B \wedge t = 0)$$

$$\Rightarrow wp(S, P) \wedge wp(S, t < 0)$$

$$\equiv wp(S, P \wedge t < 0)$$

$$\equiv wp(S, false)$$

$$\equiv false$$

A Simplified Theorem for Simple DO (cont.)

Inductive step (k > 0): $P \wedge t \leq k \Rightarrow H_k(P \wedge \neg B)$, i.e., $P \wedge t \leq k \Rightarrow H_0(P \wedge \neg B) \vee wp(\text{if } B \to S \text{ fi}, H_{k-1}(P \wedge \neg B))$.

Split $P \wedge t \leq k$ into three cases:

$$P \wedge (t \leq k-1)$$

$$P \wedge B \wedge (t = k)$$

$$\Rightarrow B \land (B \rightarrow wp(S, P)) \land B \land (B \rightarrow wp(S, t < k))$$

$$\Rightarrow wp(\mathbf{if} B \to S \mathbf{fi}, P) \land wp(\mathbf{if} B \to S \mathbf{fi}, t < k)$$

$$\equiv wp(\text{if } B \rightarrow S \text{ fi}, P \land t < k)$$

$$\equiv wp(\text{if } B \rightarrow S \text{ fi}, P \land (t \leq k-1))$$

$$\Rightarrow wp(\mathbf{if} B \to S \mathbf{fi}, H_{k-1}(P \land \neg B))$$

$$\Rightarrow H_0(P \wedge \neg B) \vee wp(\mathbf{if} B \to S \mathbf{fi}, H_{k-1}(P \wedge \neg B))$$

$$P \land \neg B \land (t = k)$$

Refinement

Syntax:

$$prog_1 \sqsubseteq prog_2$$

- which is read as " $prog_1$ is refined by $prog_2$ " or " $prog_2$ " refines $prog_1$ " ($prog_2 \supseteq prog_1$).
- Informal description: intuitively, the refinement relation conveys the concept of program $prog_2$ being better than $prog_1$. Program $prog_2$ is better in the sense that it is more accurate, applies in more situations, or runs more efficiently.
- A program may be derived through a series of refinement steps.

Specifications

Syntax:

where pre is the precondition, post is postcondition, and the "w" part is called the frame.

- Informal description: the specification describes an abstract program such that if the initial state satisfies the precondition pre, then it changes only variables listed in the frame and terminates in a final state satisfying the postcondition post.
- Examples:

$$y : [0 \le x \le 9, y^2 = x]$$

$$y : [0 \le x, y^2 = x \land y \ge 0]$$

Some Laws for Refinement

$$w:[pre,post] \sqsubseteq w:[pre,post']$$

Example:

$$y: [0 \le x \le 9, y^2 = x] \sqsubseteq y: [0 \le x \le 9, y^2 = x \land y \ge 0]$$

• weaken precondition: If $pre \Rightarrow pre'$, then

$$w:[pre,post] \sqsubseteq w:[pre',post]$$

Example:

$$y: [0 \le x \le 9, y^2 = x \land y \ge 0] \sqsubseteq y: [0 \le x, y^2 = x \land y \ge 0]$$

Combining the two refinements,

$$y: [0 \le x \le 9, y^2 = x] \sqsubseteq y: [0 \le x, y^2 = x \land y \ge 0]$$

Some Laws for Refinement (cont.)

• assignment: If $pre \Rightarrow post[E/x]$, then

$$w, x : [pre, post] \sqsubseteq x := E$$

Note: w may (but not necessarily) be changed.

igoplus sequential composition: For any predicate mid,

$$w:[pre,post] \sqsubseteq w:[pre,mid]; w:[mid,post]$$

Semantics of Specification

- Syntax: w : [pre, post]
- Semantics:

$$wp(w:[pre,post],Q) \stackrel{\Delta}{=} pre \land (\forall w(post \rightarrow Q))[v/v_0]$$

where the substitution $[v/v_0]$ replaces all "initial" variables, i.e., v_0 , by corresponding final variables. Note: initial variables v_0 do not occur in Q.

• Example: $wp(x := x \pm 1, Q) \equiv Q[x + 1/x] \land Q[x - 1/x]$

Semantics of Specification (cont.)

```
wp(x := x \pm 1, Q)
\equiv wp(x:[true, x = x_0 + 1 \lor x = x_0 - 1], Q)
     { def. of specification }
     true \wedge \forall x((x=x_0+1 \vee x=x_0-1) \rightarrow Q)[x/x_0]
\equiv \forall x ((x = x_0 + 1 \to Q) \land (x = x_0 - 1 \to Q))[x/x_0]
\equiv (\forall x(x=x_0+1\rightarrow Q) \land \forall x(x=x_0-1\rightarrow Q))[x/x_0]
\equiv \forall x(x=x_0+1\rightarrow Q)[x/x_0] \land \forall x(x=x_0-1\rightarrow Q)[x/x_0]
\equiv \{ \forall x(x=E \rightarrow A) \equiv A[E/x] \}
    (Q[x_0+1/x])[x/x_0] \wedge (Q[x_0-1/x])[x/x_0]
\equiv { Q does not contain x_0 }
    Q[x+1/x] \wedge Q[x-1/x]
```


Semantics of Refinement

- Syntax: $prog_1 \sqsubseteq prog_2$
- Semantics: for all Q,

$$wp(prog_1, Q) \Rightarrow wp(prog_2, Q)$$

Examples:

$$x := x \pm 1 \sqsubseteq x := x + 1$$

$$wp(x := x \pm 1, Q)$$

$$= O[x \pm 1/x] \wedge O[x - 1/x]$$

$$\equiv Q[x+1/x] \wedge Q[x-1/x]$$

$$\Rightarrow Q[x+1/x]$$

$$\equiv wp(x := x + 1, Q)$$

$$x := x \pm 1 \sqsubseteq x := x - 1$$

