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Computational vs. Reactive Programs

Computational (Transformational) Programs
Run to produce a final result on termination
An example:
[ local x : integer initially x = n;
y := 0;
while x > 0 do

x, y := x − 1, y + 2x − 1
od ]

Only the initial values and the (final) result are
relevant to correctness
Can be specified by pre and post-conditions such as
{n ≥ 0} y := ? {y = n2} or
y : [n ≥ 0, y = n2]

Software Specification and Verification, Fall 2009: Reactive Systems – 2/39



IM NTU

Computational vs. Reactive Programs (cont.)

Reactive Programs
Maintaining an ongoing (typically not terminating)
interaction with their environments
An example:

s : {0, 1} initially s = 1






















l0 : loop forever do
















l1 : remainder;

l2 : request(s);

l3 : critical;

l4 : release(s);







































‖























m0 : loop forever do
















m1 : remainder;

m2 : request(s);

m3 : critical;

m4 : release(s);







































Must be specified and verified in terms of their
behaviors, including the intermediate states
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The Framework

Computational Model: for providing an abstract
syntactic base

fair transition systems (FTS)
fair discrete systems (FDS)

Implementation Language: for describing the actual
implementation; will define syntax by examples;
translated into FTS or FDS for verification

Specification Language: for specifying properties of a
system; will use linear temporal logic (LTL)

Verification Techniques: for verifying that an
implementation satisfies its specification

algorithmic methods: state space exploration
deductive methods: mathematical theorem proving
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Three Kinds of Validity

Assertional Validity: validity of non-temporal formulae,
i.e., state formulae, over an arbitrary state (valuation)

General Temporal Validity: validity of temporal formulae
over arbitrary sequences of states

Program Validity: validity of a temporal formula over
sequence of states that represent computations of the
analyzed system
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Variables

Three kinds of variables will be needed:
Program (system) variables
Primed version of program variables: for referring to
the values of program variables in the next state
when defining a state transition
Specification variables: appearing only in formulae
(but not in the program) that specify properties of a
program

We assume that all these variables are drawn from a
universal set of variables V.

For every unprimed variable x ∈ V, its primed version x′

is also in V.

Each variable has a type.
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Assertions

For describing a system and its specification, we
assume an underlying first-order assertion language
over V.

The language provides the following elements:
Expressions (corresponding to first-order terms):
variables, constants, and functions applied to
expressions
Atomic formulae:
propositions or boolean variables and predicates
applied to expressions
Assertions or state formulae (corresponding to
first-order formulae):
atomic formulae, boolean connectives applied to
formulae, and quantifiers applied to formulae
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Fair Transition Systems

A fair transition system (FTS) P is a tuple 〈V,Θ, T ,J , C〉:

V ⊆ V: a finite set of typed state variables, including
data and control variables. A (type-respecting)
valuation of V is called a V -state or simply state. The
set of all V -states is denoted ΣV .

Θ : the initial condition, an assertion characterizing the
initial states.

T : a set of transitions, including the idling transition.
Each transition is associated with a transition relation,
relating a state and its successor state(s).

J ⊆ T : a set of just (weakly fair) transitions.

C ⊆ T : a set of compassionate (strongly fair) transitions.
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Transitions of an FTS

The transition relation of a transition τ ∈ T is expressed as
an assertion ρτ (V, V ′):

Example: x = 1 ∧ x′ = 0.
For s, s′ ∈ ΣV , 〈s, s′〉 |= x = 1∧x′ = 0 holds if the value of x

is 1 in state s and the value of x is 0 in (the next) state s′.

τ -successor
State s′ is a τ -successor of s if 〈s, s′〉 |= ρτ (V, V ′)

τ(s)
∆
= {s′ | s′ is a τ -successor of s}.

enabledness of τ

En(τ)
∆
= (∃V ′)ρτ (V, V ′).

τ is enabled in a state if En(τ) holds in that state.
τ is enabled in state s iff s has some τ -successor.
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Computations of an FTS

Given an FTS P = 〈V,Θ, T ,J , C〉, a computation of P is an
infinite sequence of states σ : s0, s1, s2, · · · satisfying:

Initiation: s0 is an initial state, i.e., s0 |= Θ.

Consecution: for every i ≥ 0, si+1 is a τ -successor of
state si, i.e., 〈si, si+1〉 |= ρτ (V, V ′), for some τ ∈ T . In this
case, we say that τ is taken at position i.

Justice: for every τ ∈ J , it is never the case that τ is
continuously enabled, but never taken, from some point
on.

Compassion: for every τ ∈ C, it is never the case that τ

is enabled infinitely often, but never taken, from some
point on.

The set of all computations of P is denoted by Comp(P).
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An Example Program and Its FTS

Program ANY-Y:
x, y : natural initially x = y = 0











l0 : while x = 0 do
[

l1 : y := y + 1;
]

l2 :











‖





m0 : x := 1

m2 :





Informal description:
The program consists of an asynchronous
composition of two processes.
One process continuously increments y as long as it
finds x to be 0, while the other simply sets x to 1
(when it gets its turn to execute).
The executions of the program are all possible
interleavings of the steps of the individual processes.
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An Example Program and Its FTS (cont.)

Program ANY-Y as an FTS PANY-Y = 〈V,Θ, T ,J , C〉:

V
∆
= {x, y : natural, π0 : {l0, l1, l2}, π1 : {m0,m1}}

Θ
∆
= π0 = l0 ∧ π1 = m0 ∧ x = y = 0

T
∆
= {τI , τl0 , τl1 , τm0

}, whose transition relations are
ρI : π′

0 = π0 ∧ π′

1 = π1 ∧ x′ = x ∧ y′ = y ,

ρl0 : π0 = l0 ∧ ((x = 0 ∧ π′

0 = l1) ∨ (x 6= 0 ∧ π′

0 = l2))

∧π′

1 = π1 ∧ x′ = x ∧ y′ = y
,

etc.

J
∆
= {τl0 , τl1 , τm0

}

C
∆
= ∅
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Program M UX

Q0, Q1 : bool initially Q0 = Q1 = false

T : {0, 1} initially T = 0

P0 ::


































l0 : loop forever do




























l1 : remainder;

l2 : Q0 := true ;

l3 : T := 0;

l4 : await ¬Q1 ∨ T 6= 0;

l5 : critical;

l6 : Q0 := false;































































‖

P1 ::


































m0 : loop forever do




























m1 : remainder;

m2 : Q1 := true;

m3 : T := 1;

m4 : await ¬Q0 ∨ T 6= 1;

m5 : critical;

m6 : Q1 := false;































































Justice is sufficient in preventing individual starvation.
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Strong Fairness (Compassion) Is Needed

Program MUX-SEM: mutual exclusion by a semaphore.

s : natural initially s = 1






















l0 : loop forever do
















l1 : remainder;

l2 : request(s);

l3 : critical;

l4 : release(s);







































‖























m0 : loop forever do
















m1 : remainder;

m2 : request(s);

m3 : critical;

m4 : release(s);







































request(s)
∆
= 〈await s > 0 : s := s − 1〉

release(s)
∆
= s := s + 1

C: {τl2 , τm2
}
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Linear Temporal Logic (LTL)

State formulae
Constructed from the underlying assertion language

Temporal formulae
All state formulae are also temporal formulae.
If p and q are temporal formulae and x a variable in V,
then the following are temporal formulae:
¬p, p ∨ q, p ∧ q, p → q, p ↔ q
©p, 3p, 2p, p U q, p W q
−©p, ∼©p, −3p, −2p, p S q, p B q

∃x : p, ∀x : p
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Semantics of LTL

Temporal formulae are interpreted over an infinite
sequence of states, called a model, with respect to a
position in that sequence.

We will define the satisfaction relation (σ, i) |= ϕ (or ϕ

holds in (σ, i)), as the formal semantics of a temporal
formula ϕ over an infinite sequence of states
σ = s0, s1, s2, . . . , si, . . . and a position i ≥ 0.

A sequence σ satisfies a temporal formula ϕ, denoted
σ |= ϕ, if (σ, 0) |= ϕ.

Variables in V are partitioned into flexible and rigid
variables. A flexible variable may assume different
values in different states, while a rigid variable must
assume the same value in all states of a model.
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Semantics of LTL (cont.)

For a state formula p:
(σ, i) |= p ⇐⇒ p holds at si.

Boolean combinations of formulae:
(σ, i) |= ¬p ⇐⇒ (σ, i) |= p does not hold.
(σ, i) |= p ∨ q ⇐⇒ (σ, i) |= p or (σ, i) |= q.
(σ, i) |= p ∧ q ⇐⇒ (σ, i) |= p and (σ, i) |= q.
(σ, i) |= p → q ⇐⇒ (σ, i) |= p implies (σ, i) |= q.
(σ, i) |= p ↔ q ⇐⇒ (σ, i) |= p if and only if (σ, i) |= q.

Alternatively, the latter three cases can be defined in
terms of ¬ and ∨, namely p ∧ q

∆
= ¬(¬p ∨ ¬q),

p → q
∆
= ¬p ∨ q, and p ↔ q

∆
= (p → q) ∧ (q → p).
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Semantics of LTL: Future Operators

©p (next p):
(σ, i) |= ©p ⇐⇒ (σ, i + 1) |= p.

3p (eventually p or sometime p):
(σ, i) |= 3p ⇐⇒ for some k ≥ i, (σ, k) |= p.

2p (henceforth p or always p):
(σ, i) |= 2p ⇐⇒ for every k ≥ i, (σ, k) |= p.

p U q (p until q):
(σ, i) |= p U q ⇐⇒ for some k ≥ i, (σ, k) |= q and for every
j s.t. i ≤ j < k, (σ, j) |= p.

p W q (p wait-for q):
(σ, i) |= p W q ⇐⇒ for every k ≥ i, (σ, k) |= p, or for some
k ≥ i, (σ, k) |= q and for every j, i ≤ j < k, (σ, j) |= p.
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Semantics of LTL: Future Operators (cont.)

It can be shown that, for every σ and i,
(σ, i) |= 3p iff (σ, i) |= true U p

(σ, i) |= 2p iff (σ, i) |= ¬3¬p

(σ, i) |= p W q iff (σ, i) |= 2p ∨ p U q

So, one can also take © and U as the primitive
operators and define others in terms of © and U :

3p
∆
= true U p

2p
∆
= ¬3¬p

p W q
∆
= 2p ∨ p U q
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Semantics of LTL: Past Operators

−©p (previous p):
(σ, i) |= −©p ⇐⇒ (i > 0) and (σ, i − 1) |= p.

∼©p (before p):
(σ, i) |= ∼©p ⇐⇒ (i > 0) implies (σ, i − 1) |= p.

−3p (once p):
(σ, i) |= −3p ⇐⇒ for some k, 0 ≤ k ≤ i, (σ, k) |= p.

−2p (so-far p):
(σ, i) |= −2p ⇐⇒ for every k, 0 ≤ k ≤ i, (σ, k) |= p.

p S q (p since q):
(σ, i) |= p S q ⇐⇒ for some k, 0 ≤ k ≤ i, (σ, k) |= q and for
every j, k < j ≤ i, (σ, j) |= p.
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Semantics of LTL: Past Operators (cont.)

p B q (p back-to q):
(σ, i) |= p B q ⇐⇒ for every k, 0 ≤ k ≤ i, (σ, k) |= p, or for
some k, 0 ≤ k ≤ i, (σ, k) |= q and for every j, k < j ≤ i,
(σ, j) |= p.
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Semantics of LTL: Past Operators (cont.)

It can be shown that, for every σ and i,
(σ, i) |= −©p iff (σ, i) |= ¬ ∼©¬p

(σ, i) |= −3p iff (σ, i) |= true S p

(σ, i) |= −2p iff (σ, i) |= ¬ −3¬p

(σ, i) |= p B q iff (σ, i) |= −2p ∨ p S q

So, one can also take ∼© and S as the primitive
operators and define others in terms of ∼© and S :

−©p
∆
= ¬ ∼©¬p

−3p
∆
= true S p

−2p
∆
= ¬ −3¬p

p B q
∆
= −2p ∨ p S q
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Semantics of LTL: Quantifiers

A sequence σ′ is called a u-variant of σ if σ′ differs from σ in
at most the interpretation given to u in each state.

(σ, i) |= ∃u : ϕ ⇐⇒ (σ′, i) |= ϕ for some u-variant σ′ of σ.

(σ, i) |= ∀u : ϕ ⇐⇒ (σ′, i) |= ϕ for every u-variant σ′ of σ.

Alternatively, ∀u : ϕ
∆
= ¬(∃u : ¬ϕ).

These definitions apply to both flexible and rigid variables.
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Some LTL Conventions

Let first abbreviate ∼©false, which holds only at position
0; first means “this is the first state”.

We use u− to denote the previous value of u; by
convention, u− equals u at position 0.

Example: x = x− + 1.
In pure LTL,
(first ∧ x = x + 1) ∨ (¬first ∧ ∀u : −©(x = u) → x = u + 1).

We use u+ (or u′) to denote the next value of u, i.e., the
value of u at the next position.

Example: x+ = x + 1.
In pure LTL, ∀u : x = u → ©(x = u + 1).

These previous and next-value notations also apply to
expressions.
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Validity

A state formula is state valid if it holds in every state.

A temporal formula p is (temporally) valid , denoted |= p,
if it holds in every model.

A state formula is P -state valid if it holds in every
P -accessible state (i.e., every state that appears in
some computation of P ).

A temporal formula p is P -valid , denoted P |= p, if it
holds in every computation of P .
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Equivalence and Congruence

Two formulae p and q are equivalent if p ↔ q is valid.
Example: p W q ↔ 2( −3¬p → −3q).

Two formulae p and q are congruent if 2(p ↔ q) is valid.
Example: ¬3p and 2¬p are congruent, as
2(¬3p ↔ 2¬p) is valid.

Two congruent formulae may replace each other in any
context.
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A Hierarchy of Temporal Properties

Classes of temporal properties; p, q, pi, qi below are
arbitrary past temporal formulae

Safety properties: 2p

Guarantee properties: 3p

Obligation properties:
∧n

i=1(2pi ∨ 3qi)

Response properties: 23p

Persistence properties: 32p

Reactivity properties:
∧n

i=1(23pi ∨ 32qi)

The hierarchy

Safety
Guarantee

⊆ Obligation ⊆
Response
Persistence

⊆ Reactivity

Every temporal formula is equivalent to some reactivity
formula.
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More Common Temporal Properties

Safety properties: 2p

Example: p W q is a safety property, as it is equivalent to
2( −3¬p → −3q).

Response properties
Canonical form: 23p

Variant: 2(p → 3q) (p leads-to q), which is equivalent
to 23(¬p B q).

Reactivity properties:
∧n

i=1(23pi ∨ 32qi)

(Simple) reactivity properties
Canonical form: 23p ∨ 32q

Variants: 23p → 23q or 2(23p → 3q), which is
equivalent to 23q ∨ 32¬p.
Extended form: 2((p ∧ 23r) → 3q)
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Rules for Safety Properties

Rule INV
I1. Θ → ϕ

I2. ϕ → q

I3. {ϕ} T {ϕ}

2q

where {p} T {q} means {p} τ {q} (i.e., ρτ ∧ p → q′) for every
τ ∈ T

The auxiliary assertion ϕ is called an inductive invariant ,
as it holds initially and is preserved by every transition.

This rule is sound and (relatively) complete for
establishing P -validity of the future safety formula 2q

(where q is a state formula).
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A Safety Property of Program M UX-SEM

Mutual exclusion: 2(¬(π0 = l3 ∧ π1 = m3)), which is not
inductive.

The inductive ϕ needed:

y ≥ 0 ∧ (π0 = l3) + (π0 = l4) + (π1 = m3) + (π1 = m4) + y = 1

where true and false are equated respectively with 1 and
0.
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Rules for Response Properties

Rule J-RESP (for a just transition τ ∈ J )

J1. 2(p → (q ∨ ϕ))

J2. {ϕ} T {q ∨ ϕ}

J3. {ϕ} τ {q}

J4. 2(ϕ → (q ∨ En(τ)))

2(p → 3q)

This is a “one-step” rule that relies on a helpful just
transition.
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Rules for Response Properties (cont.)

Analogously, there is a one-step rule that relies on a helpful
compassionate transition.

Rule C-RESP (for a compassionate transition τ ∈ C)

C1. 2(p → (q ∨ ϕ))

C2. {ϕ} T {q ∨ ϕ}

C3. {ϕ} τ {q}

C4. T − {τ} ⊢ 2(ϕ → 3(q ∨ En(τ)))

2(p → 3q)

Premise C4 states that the proof obligation should be
carried out for a smaller program with T − {τ} as the set of
transitions.
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Rules for Response Properties (cont.)

Rule M-RESP (monotonicity) and Rule T-RESP (transitivity)

2(p → r),2(t → q)

2(r → 3t)

2(p → 3q)

2(p → 3r)

2(r → 3q)

2(p → 3q)

These rules belong to the part for proving general temporal
validity. They are convenient, but not necessary when we
have a relatively complete rule that reduce program validity
directly to assertional validity.
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Rules for Response Properties (cont.)

A ranking function maps finite sequences of states into a
well-founded set.

Rule W-RESP (with a ranking function δ)

W1. 2(p → (q ∨ ϕ))

W2. 2([ϕ ∧ (δ = α)] → 3[q ∨ (ϕ ∧ δ ≺ α)])

2(p → 3q)
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Rules for Response Properties (cont.)

Let T = {τ1, · · · , τn}. ϕ denotes ϕ1 ∨ ϕ2 ∨ · · · ∨ ϕn and δ is a
ranking function.

Rule F-RESP

F1. 2(p → (q ∨ ϕ))

for i = 1, · · · ,m

F2. {ϕi ∧ (δ = α)} T {q ∨ (ϕ ∧ (δ ≺ α)) ∨ (ϕi ∧ (δ � α))}

F3. {ϕi ∧ (δ = α)} τi {q ∨ (ϕ ∧ (δ ≺ α))}

J4. 2(ϕi → (q ∨ En(τi))), if τi ∈ J

C4. T − {τi} ⊢ 2(ϕi → 3(q ∨ En(τi))), if τi ∈ C

2(p → 3q)

Rule F-RESP is (relatively) complete for proving the
P-validity of any response formula of the form 2(p → 3q).

Software Specification and Verification, Fall 2009: Reactive Systems – 35/39



IM NTU

Rules for Reactivity Properties

Rule B-REAC

B1. 2(p → (q ∨ ϕ))

B2. {ϕ ∧ (δ = α)} T {q ∨ (ϕ ∧ (δ � α))}

B3. 2([ϕ ∧ (δ = α) ∧ r] → 3[q ∨ (δ ≺ α)])

2((p ∧ 23r) → 3q)

For programs without compassionate transitions, Rule
B-REAC is (relatively) complete for proving the P-validity of
any (simple, extended) reactivity formula of the form
2((p ∧ 23r) → 3q).
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Fair Discrete Systems (cont.)

An FDS D is a tuple 〈V,Θ, ρ,J , C〉:
V ⊆ V: A finite set of typed state variables,
containing data and control variables.
Θ : The initial condition, an assertion characterizing
the initial states.
ρ : The transition relation, an assertion relating the
values of the state variables in a state to the values
in the next state.
J = {J1, · · · , Jk} : A set of justice requirements (weak
fairness).
C = {〈p1, q1〉, · · · , 〈pn, qn〉} : A set of compassion
requirements (strong fairness).
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Fair Discrete Systems (cont.)

So, FDS is a slight variation of the model of fair
transition system.

The main difference between the FDS and FTS models
is in the representation of fairness constraints.

FDS enables a unified representation of fairness
constraints arising from both the system being verified,
and the temporal property.

A computation of D is an infinite sequence of states
σ = s0, s1, s2, · · · satisfying Initiation, Consecution,
Justice, and Compassion conditions.
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Program M UX-SEM as an FDS

Program MUX-SEM: mutual exclusion by a semaphore.

s : natural initially s = 1






















l0 : loop forever do
















l1 : remainder;

l2 : request(s);

l3 : critical;

l4 : release(s);







































‖























m0 : loop forever do
















m1 : remainder;

m2 : request(s);

m3 : critical;

m4 : release(s);







































request(s)
∆
= 〈await s > 0 : s := s − 1〉

release(s)
∆
= s := s + 1

C: {(at_l2 ∧ s > 0, at_l3), (at_m2 ∧ s > 0, at_m3)}
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