# Temporal Verification of Reactive Systems (Based on Manna and Pnueli [1991,1995,1996])

Yih-Kuen Tsay

Dept. of Information Management National Taiwan University



Software Specification and Verification, Fall 2009: Reactive Systems - 1/39

# **Computational vs. Reactive Programs**

- Computational (Transformational) Programs
  - Run to produce a final result on termination
  - An example:
    - [ local x : integer initially x = n; y := 0; while x > 0 do x, y := x - 1, y + 2x - 1od ]
  - 3
- Only the initial values and the (final) result are relevant to correctness

Can be specified by pre and post-conditions such as  $\{n > 0\}$   $y := ? \{y = n^2\}$  or

• 
$$\{n \ge 0\} \ y := 1 \ \{y = 0\}$$
  
•  $y : [n \ge 0, y = n^2]$ 



# **Computational vs. Reactive Programs (cont**

- Reactive Programs
  - Maintaining an ongoing (typically not terminating) interaction with their environments
  - An example:

 $s: \{0, 1\} \text{ initially } s = 1$   $\begin{bmatrix} l_0 : \text{loop forever do} \\ l_1 : \text{ remainder}; \\ l_2 : \text{ request}(s); \\ l_3 : \text{ critical}; \\ l_4 : \text{ release}(s); \end{bmatrix} \begin{bmatrix} m_0 : \text{loop forever do} \\ m_1 : \text{ remainder}; \\ m_2 : \text{ request}(s); \\ m_3 : \text{ critical}; \\ m_4 : \text{ release}(s); \end{bmatrix} \end{bmatrix}$ 

Must be specified and verified in terms of their behaviors, including the intermediate states



### **The Framework**

- Computational Model: for providing an abstract syntactic base
  - fair transition systems (FTS)
  - fair discrete systems (FDS)
- Implementation Language: for describing the actual implementation; will define syntax by examples; translated into FTS or FDS for verification
- Specification Language: for specifying properties of a system; will use linear temporal logic (LTL)
- Verification Techniques: for verifying that an implementation satisfies its specification
  - algorithmic methods: state space exploration





#### **Three Kinds of Validity**

- Assertional Validity: validity of non-temporal formulae, i.e., state formulae, over an arbitrary state (valuation)
- General Temporal Validity: validity of temporal formulae over arbitrary sequences of states
- Program Validity: validity of a temporal formula over sequence of states that represent computations of the analyzed system



#### Variables

- Three kinds of variables will be needed:
  - Program (system) variables
  - Primed version of program variables: for referring to the values of program variables in the next state when defining a state transition
  - Specification variables: appearing only in formulae (but not in the program) that specify properties of a program
- We assume that all these variables are drawn from a universal set of variables V.
- Solution For every unprimed variable  $x \in \mathcal{V}$ , its primed version x' is also in  $\mathcal{V}$ .
- Each variable has a type.

#### Assertions

- For describing a system and its specification, we assume an underlying first-order assertion language over V.
- The language provides the following elements:
  - Expressions (corresponding to first-order terms): variables, constants, and functions applied to expressions
  - Atomic formulae:

propositions or boolean variables and predicates applied to expressions

Assertions or state formulae (corresponding to first-order formulae): atomic formulae, boolean connectives applied to formulae, and quantifiers applied to formulae



# **Fair Transition Systems**

A fair transition system (FTS)  $\mathcal{P}$  is a tuple  $\langle V, \Theta, \mathcal{T}, \mathcal{J}, \mathcal{C} \rangle$ :

- $V \subseteq \mathcal{V}$ : a finite set of typed state variables, including data and control variables. A (type-respecting) valuation of V is called a V-state or simply state. The set of all V-states is denoted  $\Sigma_V$ .
- $\Theta$  : the initial condition, an assertion characterizing the *initial states*.
- T : a set of transitions, including the *idling* transition. Each transition is associated with a *transition relation*, relating a state and its successor state(s).
- $\mathcal{J} \subseteq \mathcal{T}$ : a set of just (weakly fair) transitions.
- $C \subseteq T$ : a set of compassionate (strongly fair) transitions.



# **Transitions of an FTS**

The transition relation of a transition  $\tau \in \mathcal{T}$  is expressed as an assertion  $\rho_{\tau}(V, V')$ :

Solution Example:  $x = 1 \land x' = 0$ . For  $s, s' \in \Sigma_V$ ,  $\langle s, s' \rangle \models x = 1 \land x' = 0$  holds if the value of x is 1 in state s and the value of x is 0 in (the next) state s'.

#### 😚 au-successor

**State** s' is a  $\tau$ -successor of s if  $\langle s, s' \rangle \models \rho_{\tau}(V, V')$ 

$$rightarrow au(s) \stackrel{\Delta}{=} \{s' \mid s' \text{ is a } \tau \text{-successor of } s\}.$$

#### igstarrow enabledness of au

$$\stackrel{\bullet}{=} En(\tau) \stackrel{\Delta}{=} (\exists V') \rho_{\tau}(V, V').$$

- $rac{1}{2}$   $\tau$  is enabled in a state if  $En(\tau)$  holds in that state.
- $rac{1}{*}$   $\tau$  is enabled in state s iff s has some  $\tau$ -successor.



# **Computations of an FTS**

Given an FTS  $\mathcal{P} = \langle V, \Theta, \mathcal{T}, \mathcal{J}, \mathcal{C} \rangle$ , a computation of  $\mathcal{P}$  is an infinite sequence of states  $\sigma : s_0, s_1, s_2, \cdots$  satisfying:

- Solution:  $s_0$  is an initial state, i.e.,  $s_0 \models \Theta$ .
- Solution: for every  $i \ge 0$ ,  $s_{i+1}$  is a  $\tau$ -successor of state  $s_i$ , i.e.,  $\langle s_i, s_{i+1} \rangle \models \rho_{\tau}(V, V')$ , for some  $\tau \in \mathcal{T}$ . In this case, we say that  $\tau$  is *taken* at position *i*.
- Solution Justice: for every  $\tau \in \mathcal{J}$ , it is never the case that  $\tau$  is continuously enabled, but never taken, from some point on.
- Compassion: for every *τ* ∈ C, it is never the case that *τ* is enabled infinitely often, but never taken, from some point on.

The set of all computations of  $\mathcal{P}$  is denoted by  $Comp(\mathcal{P})$ .



### An Example Program and Its FTS

#### Program ANY-Y:

x, y: natural **initially** x = y = 0

$$\begin{bmatrix} l_0 : \mathbf{while} \ x = 0 \ \mathbf{do} \\ \begin{bmatrix} l_1 : \ y := y + 1; \end{bmatrix} \\ l_2 : \end{bmatrix} \| \begin{bmatrix} m_0 : x := 1 \\ m_2 : \end{bmatrix}$$

Informal description:

- The program consists of an asynchronous composition of two processes.
- One process continuously increments y as long as it finds x to be 0, while the other simply sets x to 1 (when it gets its turn to execute).



The executions of the program are all possible interleavings of the steps of the individual processes.

### An Example Program and Its FTS (cont.)

Program ANY-Y as an FTS  $\mathcal{P}_{ANY-Y} = \langle V, \Theta, \mathcal{T}, \mathcal{J}, \mathcal{C} \rangle$ :  $= \{ x, y : \text{natural}, \pi_0 : \{ l_0, l_1, l_2 \}, \pi_1 : \{ m_0, m_1 \} \}$  $\oplus \Theta \stackrel{\Delta}{=} \pi_0 = l_0 \wedge \pi_1 = m_0 \wedge x = y = 0$  $\notin \mathcal{T} \triangleq \{\tau_I, \tau_{l_0}, \tau_{l_1}, \tau_{m_0}\},$  whose transition relations are  $\rho_I: \ \pi_0' = \pi_0 \land \pi_1' = \pi_1 \land x' = x \land y' = y$  $\rho_{l_0}: \pi_0 = l_0 \wedge ((x = 0 \wedge \pi'_0 = l_1) \vee (x \neq 0 \wedge \pi'_0 = l_2))$  $\wedge \pi'_1 = \pi_1 \wedge x' = x \wedge y' = y$ 

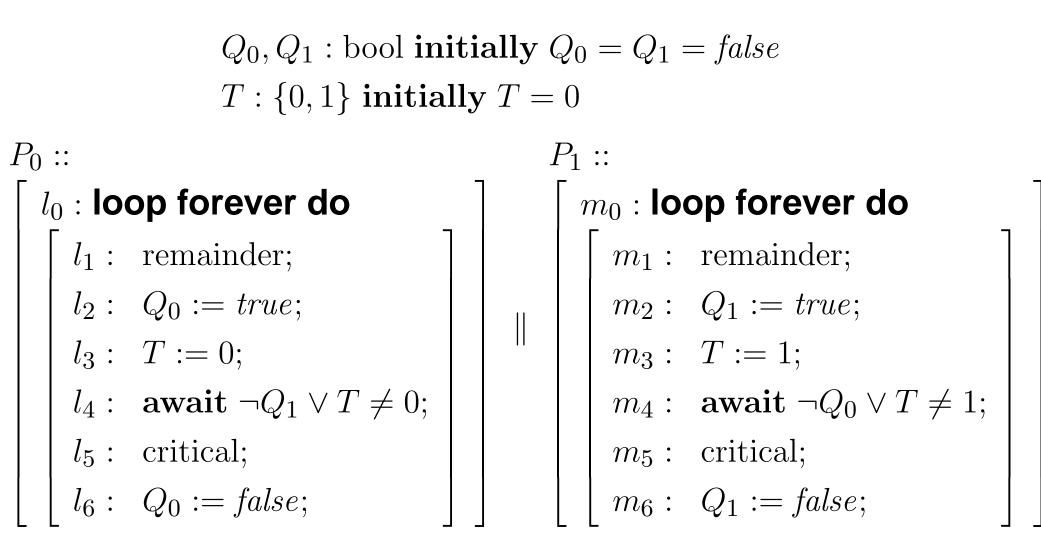
etc.

$$\stackrel{\hspace{0.1em} \circledast}{\circledast} \mathcal{J} \stackrel{\Delta}{=} \{\tau_{l_0}, \tau_{l_1}, \tau_{m_0}\}$$
$$\stackrel{\hspace{0.1em} \circledast}{\circledast} \mathcal{C} \stackrel{\Delta}{=} \emptyset$$



"

#### Program Mux



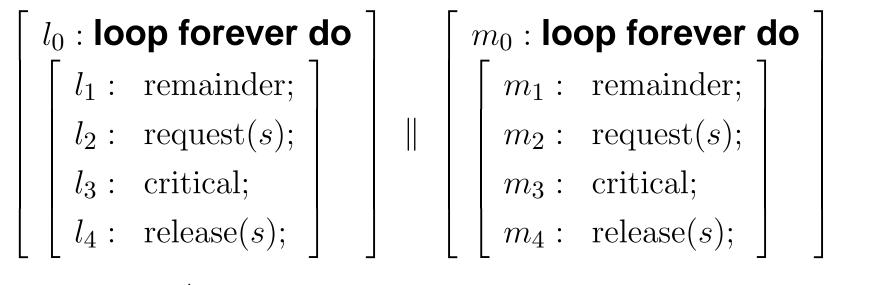
#### Justice is sufficient in preventing individual starvation.



### **Strong Fairness (Compassion) Is Needed**

Program MUX-SEM: mutual exclusion by a semaphore.

s : natural **initially** s = 1



\* request(s) 
$$\stackrel{\Delta}{=} \langle \text{await } s > 0 : s := s - 1 \rangle$$
\* release(s)  $\stackrel{\Delta}{=} s := s + 1$ 
C:  $\{\tau_{l_2}, \tau_{m_2}\}$ 



# Linear Temporal Logic (LTL)

- State formulae Constructed from the underlying assertion language
- Temporal formulae
  - All state formulae are also temporal formulae.
  - \* If p and q are temporal formulae and x a variable in  $\mathcal{V}$ , then the following are temporal formulae:

$$\bullet$$
  $\neg p$ ,  $p \lor q$ ,  $p \land q$ ,  $p \to q$ ,  $p \leftrightarrow q$ 

- ${oldsymbol {\omega}} \ {\bigcirc} p$ ,  ${\diamondsuit} p$ ,  ${\Box} p$ ,  $p \ {\mathcal U} q$ ,  $p \ {\mathcal W} q$
- $\bullet$   $\bigcirc p$ ,  $\bigcirc p$ ,  $\diamond p$ ,  $\boxminus p$ ,  $p \mathcal{S}q$ ,  $p \mathcal{B}q$
- $\bullet$   $\exists x : p, \forall x : p$



# **Semantics of LTL**

- Temporal formulae are interpreted over an infinite sequence of states, called a model, with respect to a position in that sequence.
- Solution We will define the satisfaction relation  $(\sigma, i) \models \varphi$  (or  $\varphi$  holds in  $(\sigma, i)$ ), as the formal semantics of a temporal formula  $\varphi$  over an infinite sequence of states  $\sigma = s_0, s_1, s_2, \ldots, s_i, \ldots$  and a position  $i \ge 0$ .
- Solution A sequence  $\sigma$  satisfies a temporal formula  $\varphi$ , denoted  $\sigma \models \varphi$ , if  $(\sigma, 0) \models \varphi$ .
- Variables in V are partitioned into *flexible* and *rigid* variables. A flexible variable may assume different values in different states, while a rigid variable must assume the same value in all states of a model.



### Semantics of LTL (cont.)

- For a state formula p:  $(\sigma,i) \models p \iff p$  holds at  $s_i$ .
- Boolean combinations of formulae:

$$\begin{array}{l} (\sigma,i) \models \neg p \iff (\sigma,i) \models p \text{ does not hold.} \\ (\sigma,i) \models p \lor q \iff (\sigma,i) \models p \text{ or } (\sigma,i) \models q. \\ (\sigma,i) \models p \land q \iff (\sigma,i) \models p \text{ and } (\sigma,i) \models q. \\ (\sigma,i) \models p \rightarrow q \iff (\sigma,i) \models p \text{ implies } (\sigma,i) \models q. \\ (\sigma,i) \models p \leftrightarrow q \iff (\sigma,i) \models p \text{ if and only if } (\sigma,i) \models q. \end{array}$$

Alternatively, the latter three cases can be defined in terms of  $\neg$  and  $\lor$ , namely  $p \land q \triangleq \neg(\neg p \lor \neg q)$ ,  $p \rightarrow q \triangleq \neg p \lor q$ , and  $p \leftrightarrow q \triangleq (p \rightarrow q) \land (q \rightarrow p)$ .



#### **Semantics of LTL: Future Operators**

$$\bigcirc p \text{ (next } p\text{):}$$
  
 $(\sigma, i) \models \bigcirc p \iff (\sigma, i+1) \models p.$ 
 $\diamondsuit p \text{ (eventually } p \text{ or sometime } p\text{):}$   
 $(\sigma, i) \models \diamondsuit p \iff \text{ for some } k \ge i, (\sigma, k) \models p.$ 
 $\square p \text{ (henceforth } p \text{ or always } p\text{):}$   
 $(\sigma, i) \models \square p \iff \text{ for every } k \ge i, (\sigma, k) \models p.$ 
 $p \mathcal{U} q \text{ (p until } q\text{):}$   
 $(\sigma, i) \models p \mathcal{U} q \iff \text{ for some } k \ge i, (\sigma, k) \models q.$ 

*j* s.t.  $i \leq j < k$ ,  $(\sigma, j) \models p$ . *p*  $\mathcal{W}q$  (*p* wait-for *q*):  $(\sigma, i) \models p \mathcal{W}q \iff$  for every  $k \geq i$ ,  $(\sigma, k) \models p$ , or for some  $k \geq i$ ,  $(\sigma, k) \models q$  and for every *j*,  $i \leq j < k$ ,  $(\sigma, j) \models p$ .



and for every

### Semantics of LTL: Future Operators (cont.)

Solution It can be shown that, for every  $\sigma$  and i,

$$\stackrel{\hspace{0.1em} \circledast}{=} (\sigma,i) \models \Diamond p \text{ iff } (\sigma,i) \models true \ \mathcal{U} p$$

$$\circledast (\sigma, i) \models \Box p \text{ iff } (\sigma, i) \models \neg \Diamond \neg p$$

$$(\sigma, i) \models p \mathcal{W} q \text{ iff } (\sigma, i) \models \Box p \lor p \mathcal{U} q$$

So, one can also take  $\bigcirc$  and  $\mathcal{U}$  as the primitive operators and define others in terms of  $\bigcirc$  and  $\mathcal{U}$ :



#### **Semantics of LTL: Past Operators**

- ⊕ p (previous p):
    $(σ,i) \models Θp \iff (i > 0) \text{ and } (σ,i-1) \models p.$
- $\odot p$  (before *p*):  $(\sigma, i) \models \odot p \iff (i > 0) \text{ implies } (\sigma, i - 1) \models p.$
- ♦ p (once *p*):  $(σ,i) \models φp \iff \text{for some } k, 0 \le k \le i, (σ,k) \models p.$
- Solution ⇒ for every k, 0 ≤ k ≤ i, (σ, k) ⊨ p.



### Semantics of LTL: Past Operators (cont.)

P Bq (p back-to q):
  $(\sigma, i) \models p Bq \iff$  for every  $k, 0 \le k \le i, (\sigma, k) \models p$ , or for some  $k, 0 \le k \le i, (\sigma, k) \models q$  and for every  $j, k < j \le i, (\sigma, j) \models p$ .



#### Semantics of LTL: Past Operators (cont.)

It can be shown that, for every  $\sigma$  and i,

$$\begin{array}{l} \circledast \ (\sigma,i) \models \bigcirc p \ \text{iff} \ (\sigma,i) \models \neg \oslash \neg p \\ \circledast \ (\sigma,i) \models \diamondsuit p \ \text{iff} \ (\sigma,i) \models true \ S p \\ \circledast \ (\sigma,i) \models \boxdot p \ \text{iff} \ (\sigma,i) \models \neg \diamondsuit \neg p \\ \circledast \ (\sigma,i) \models p \ B \ q \ \text{iff} \ (\sigma,i) \models \boxdot p \ S \ q \end{array}$$

So, one can also take  $\odot$  and S as the primitive operators and define others in terms of  $\odot$  and S:



# **Semantics of LTL: Quantifiers**

A sequence  $\sigma'$  is called a *u*-variant of  $\sigma$  if  $\sigma'$  differs from  $\sigma$  in at most the interpretation given to *u* in each state.

•  $(\sigma, i) \models \exists u : \varphi \iff (\sigma', i) \models \varphi$  for some *u*-variant  $\sigma'$  of  $\sigma$ . •  $(\sigma, i) \models \forall u : \varphi \iff (\sigma', i) \models \varphi$  for every *u*-variant  $\sigma'$  of  $\sigma$ . Alternatively,  $\forall u : \varphi \triangleq \neg(\exists u : \neg \varphi)$ .

These definitions apply to both flexible and rigid variables.



# **Some LTL Conventions**

- Solution Let *first* abbreviate  $\bigcirc$  *false*, which holds only at position 0; *first* means "this is the first state".
- Solution We use  $u^-$  to denote the previous value of u; by convention,  $u^-$  equals u at position 0.

**\*** Example: 
$$x = x^{-} + 1$$
.

- In pure LTL,  $(first \land x = x + 1) \lor (\neg first \land \forall u : \ominus (x = u) \rightarrow x = u + 1).$
- Solution We use  $u^+$  (or u') to denote the next value of u, i.e., the value of u at the next position.
  - **\* Example:**  $x^+ = x + 1$ .
  - $\circledast$  In pure LTL,  $\forall u : x = u \rightarrow \bigcirc (x = u + 1)$ .
- These previous and next-value notations also apply to expressions.



### Validity

- A state formula is state valid if it holds in every state.
- A temporal formula p is (temporally) valid, denoted  $\models p$ , if it holds in every model.
- A state formula is *P*-state valid if it holds in every *P*-accessible state (i.e., every state that appears in some computation of *P*).
- A temporal formula p is *P*-valid, denoted  $P \models p$ , if it holds in every computation of *P*.



## **Equivalence and Congruence**

- Two formulae p and q are *equivalent* if  $p \leftrightarrow q$  is valid. Example:  $p \mathcal{W} q \leftrightarrow \Box( \Leftrightarrow \neg p \rightarrow \Leftrightarrow q)$ .
- Two formulae p and q are *congruent* if  $\Box(p \leftrightarrow q)$  is valid. Example:  $\neg \diamondsuit p$  and  $\Box \neg p$  are congruent, as  $\Box(\neg \diamondsuit p \leftrightarrow \Box \neg p)$  is valid.
- Two congruent formulae may replace each other in any context.



# A Hierarchy of Temporal Properties

- Classes of temporal properties; p, q, p<sub>i</sub>, q<sub>i</sub> below are arbitrary past temporal formulae
  - **Safety properties:**  $\Box p$
  - $\clubsuit$  Guarantee properties:  $\diamond p$
  - Solution properties:  $\bigwedge_{i=1}^{n} (\Box p_i \lor \Diamond q_i)$
  - **\*** Response properties:  $\Box \diamond p$
  - **Solution** Persistence properties:  $\Diamond \Box p$
  - **Solution** Reactivity properties:  $\bigwedge_{i=1}^{n} (\Box \Diamond p_i \lor \Diamond \Box q_i)$

#### The hierarchy

 $\begin{array}{ll} \mbox{Safety} \\ \mbox{Guarantee} \end{array} & \subseteq \mbox{Obligation} \subseteq \end{array} & \begin{array}{ll} \mbox{Response} \\ \mbox{Persistence} \end{array} & \subseteq \mbox{Reactivity} \end{array}$ 

Every temporal formula is equivalent to some reactivity formula.
Software Specification and Verification, Fall 2009: Reactive Systems – 27/39

# **More Common Temporal Properties**

- Safety properties:  $\Box p$ Example:  $p \mathcal{W} q$  is a safety property, as it is equivalent to  $\Box( \Leftrightarrow \neg p \rightarrow \Leftrightarrow q)$ .
- Response properties
  - **\circledast** Canonical form:  $\Box \diamond p$
  - Wariant: □(p →  $\Diamond q$ ) (p leads-to q), which is equivalent to □ $\Diamond$ (¬p  $\mathcal{B}q$ ).
- S Reactivity properties:  $\bigwedge_{i=1}^{n} (\Box \Diamond p_i \lor \Diamond \Box q_i)$
- (Simple) reactivity properties
  - **Solution** Canonical form:  $\Box \diamond p \lor \diamond \Box q$
  - \* Variants:  $\Box \diamond p \to \Box \diamond q$  or  $\Box (\Box \diamond p \to \diamond q)$ , which is equivalent to  $\Box \diamond q \lor \diamond \Box \neg p$ .



**Solution** Extended form:  $\Box((p \land \Box \diamondsuit r) \rightarrow \diamondsuit q)$ 

### **Rules for Safety Properties**

Rule INV

I1. 
$$\Theta \to \varphi$$
  
I2.  $\varphi \to q$   
I3.  $\{\varphi\} \mathcal{T} \{\varphi\}$   
 $\Box q$ 

where  $\{p\} \mathcal{T} \{q\}$  means  $\{p\} \tau \{q\}$  (i.e.,  $\rho_{\tau} \land p \rightarrow q'$ ) for every  $\tau \in \mathcal{T}$ 

- Solution  $\varphi$  is called an *inductive invariant*, as it holds initially and is preserved by every transition.
- This rule is sound and (relatively) complete for establishing *P*-validity of the future safety formula \[\sigmaq] q (where q is a state formula).



# A Safety Property of Program MUX-SEM

- Solution Mutual exclusion:  $\Box(\neg(\pi_0 = l_3 \land \pi_1 = m_3))$ , which is not inductive.
- Solution The inductive  $\varphi$  needed:

$$y \ge 0 \land (\pi_0 = l_3) + (\pi_0 = l_4) + (\pi_1 = m_3) + (\pi_1 = m_4) + y = 1$$

where *true* and *false* are equated respectively with 1 and 0.



#### **Rules for Response Properties**

Rule J-RESP (for a just transition  $\tau \in \mathcal{J}$ )

J1. 
$$\Box(p \to (q \lor \varphi))$$
  
J2.  $\{\varphi\} \mathcal{T} \{q \lor \varphi\}$   
J3.  $\{\varphi\} \tau \{q\}$   
J4. 
$$\Box(\varphi \to (q \lor En(\tau)))$$
  
$$\Box(p \to \diamondsuit q)$$

This is a "one-step" rule that relies on a helpful just transition.



Analogously, there is a one-step rule that relies on a helpful compassionate transition.

Rule C-RESP (for a compassionate transition  $\tau \in C$ )

C1. 
$$\Box(p \to (q \lor \varphi))$$
  
C2. 
$$\{\varphi\} \ \mathcal{T} \ \{q \lor \varphi\}$$
  
C3. 
$$\{\varphi\} \ \tau \ \{q\}$$
  
C4. 
$$\mathcal{T} - \{\tau\} \vdash \Box(\varphi \to \diamondsuit(q \lor En(\tau)))$$
  

$$\Box(p \to \diamondsuit q)$$

Premise C4 states that the proof obligation should be carried out for a smaller program with  $T - \{\tau\}$  as the set of transitions.



Rule M-RESP (monotonicity) and Rule T-RESP (transitivity)

$$\begin{array}{ll} \Box(p \to r), \Box(t \to q) & \Box(p \to \Diamond r) \\ \hline \Box(r \to \Diamond t) & \Box(r \to \Diamond q) \\ \hline \Box(p \to \Diamond q) & \Box(p \to \Diamond q) \end{array} \end{array}$$

These rules belong to the part for proving general temporal validity. They are convenient, but not necessary when we have a relatively complete rule that reduce program validity directly to assertional validity.



A *ranking function* maps finite sequences of states into a well-founded set.

Rule W-RESP (with a ranking function  $\delta$ )

W1. 
$$\Box(p \to (q \lor \varphi))$$
  
W2.  $\Box([\varphi \land (\delta = \alpha)] \to \diamondsuit[q \lor (\varphi \land \delta \prec \alpha)])$   
 $\Box(p \to \diamondsuit q)$ 



Let  $T = \{\tau_1, \dots, \tau_n\}$ .  $\varphi$  denotes  $\varphi_1 \lor \varphi_2 \lor \dots \lor \varphi_n$  and  $\delta$  is a ranking function.

#### **Rule F-RESP**

F1. 
$$\Box(p \to (q \lor \varphi))$$
  
for  $i = 1, \dots, m$   
F2.  $\{\varphi_i \land (\delta = \alpha)\} \mathcal{T} \{q \lor (\varphi \land (\delta \prec \alpha)) \lor (\varphi_i \land (\delta \preceq \alpha))\}$   
F3.  $\{\varphi_i \land (\delta = \alpha)\} \tau_i \{q \lor (\varphi \land (\delta \prec \alpha))\}$   
J4. 
$$\Box(\varphi_i \to (q \lor En(\tau_i))), \text{ if } \tau_i \in \mathcal{J}$$
  
C4.  $\mathcal{T} - \{\tau_i\} \vdash \Box(\varphi_i \to \diamondsuit(q \lor En(\tau_i))), \text{ if } \tau_i \in \mathcal{C}$   

$$\Box(p \to \diamondsuit q)$$

Rule F-RESP is (relatively) complete for proving the -validity of any response formula of the form  $\Box(p \rightarrow \Diamond q)$ . Software Specification and Verification, Fall 2009: Reactive Systems – 35/39

#### **Rules for Reactivity Properties**

#### **Rule B-REAC**

B1. 
$$\Box(p \to (q \lor \varphi))$$
  
B2. 
$$\{\varphi \land (\delta = \alpha)\} \mathcal{T} \{q \lor (\varphi \land (\delta \preceq \alpha))\}$$
  
B3. 
$$\Box([\varphi \land (\delta = \alpha) \land r] \to \diamondsuit[q \lor (\delta \prec \alpha)])$$
$$\Box((p \land \Box \diamondsuit r) \to \diamondsuit q)$$

For programs without compassionate transitions, Rule B-REAC is (relatively) complete for proving the  $\mathcal{P}$ -validity of any (simple, extended) reactivity formula of the form  $\Box((p \land \Box \diamondsuit r) \rightarrow \diamondsuit q)$ .



### Fair Discrete Systems (cont.)

- An FDS  $\mathcal{D}$  is a tuple  $\langle V, \Theta, \rho, \mathcal{J}, \mathcal{C} \rangle$ :
  - \*  $V \subseteq V$ : A finite set of typed state variables, containing *data* and *control* variables.
  - $\Theta$ : The initial condition, an assertion characterizing the initial states.
  - ho: The transition relation, an assertion relating the values of the state variables in a state to the values in the next state.
  - \*  $\mathcal{J} = \{J_1, \dots, J_k\}$ : A set of justice requirements (weak fairness).
  - \*  $C = \{\langle p_1, q_1 \rangle, \dots, \langle p_n, q_n \rangle\}$ : A set of compassion requirements (strong fairness).



### Fair Discrete Systems (cont.)

- So, FDS is a slight variation of the model of fair transition system.
- The main difference between the FDS and FTS models is in the representation of fairness constraints.
- FDS enables a unified representation of fairness constraints arising from both the system being verified, and the temporal property.
- A computation of  $\mathcal{D}$  is an infinite sequence of states  $\sigma = s_0, s_1, s_2, \cdots$  satisfying *Initiation*, *Consecution*, *Justice*, and *Compassion* conditions.



#### Program Mux-Seм as an FDS

- Program MUX-SEM: mutual exclusion by a semaphore. s: natural **initially** s = 1 $\begin{bmatrix} l_0 : \text{loop forever do} \\ l_1 : \text{ remainder;} \\ l_2 : \text{ request}(s); \\ l_3 : \text{ critical;} \\ l_4 : \text{ release}(s); \end{bmatrix} \begin{bmatrix} m_0 : \text{loop forever do} \\ m_1 : \text{ remainder;} \\ m_2 : \text{ request}(s); \\ m_3 : \text{ critical;} \\ m_4 : \text{ release}(s); \end{bmatrix}$

\* request(s) 
$$\stackrel{\Delta}{=} \langle \text{await } s > 0 : s := s - 1 \rangle$$
\* release(s)  $\stackrel{\Delta}{=} s := s + 1$ 
C: {(at  $l_2 \land s > 0, at \ l_3), (at \ m_2 \land s > 0, at \ m_3)}$ 

