
IM NTU

Temporal Verification of Reactive Systems
(Based on Manna and Pnueli [1991,1995,1996])

Yih-Kuen Tsay

Dept. of Information Management

National Taiwan University

Software Specification and Verification, Fall 2009: Reactive Systems – 1/39

IM NTU

Computational vs. Reactive Programs

Computational (Transformational) Programs
Run to produce a final result on termination
An example:
[local x : integer initially x = n;
y := 0;
while x > 0 do

x, y := x − 1, y + 2x − 1
od]

Only the initial values and the (final) result are
relevant to correctness
Can be specified by pre and post-conditions such as
{n ≥ 0} y := ? {y = n2} or
y : [n ≥ 0, y = n2]

Software Specification and Verification, Fall 2009: Reactive Systems – 2/39

IM NTU

Computational vs. Reactive Programs (cont.)

Reactive Programs
Maintaining an ongoing (typically not terminating)
interaction with their environments
An example:

s : {0, 1} initially s = 1

l0 : loop forever do

l1 : remainder;

l2 : request(s);

l3 : critical;

l4 : release(s);

‖

m0 : loop forever do

m1 : remainder;

m2 : request(s);

m3 : critical;

m4 : release(s);

Must be specified and verified in terms of their
behaviors, including the intermediate states

Software Specification and Verification, Fall 2009: Reactive Systems – 3/39

IM NTU

The Framework

Computational Model: for providing an abstract
syntactic base

fair transition systems (FTS)
fair discrete systems (FDS)

Implementation Language: for describing the actual
implementation; will define syntax by examples;
translated into FTS or FDS for verification

Specification Language: for specifying properties of a
system; will use linear temporal logic (LTL)

Verification Techniques: for verifying that an
implementation satisfies its specification

algorithmic methods: state space exploration
deductive methods: mathematical theorem proving

Software Specification and Verification, Fall 2009: Reactive Systems – 4/39

IM NTU

Three Kinds of Validity

Assertional Validity: validity of non-temporal formulae,
i.e., state formulae, over an arbitrary state (valuation)

General Temporal Validity: validity of temporal formulae
over arbitrary sequences of states

Program Validity: validity of a temporal formula over
sequence of states that represent computations of the
analyzed system

Software Specification and Verification, Fall 2009: Reactive Systems – 5/39

IM NTU

Variables

Three kinds of variables will be needed:
Program (system) variables
Primed version of program variables: for referring to
the values of program variables in the next state
when defining a state transition
Specification variables: appearing only in formulae
(but not in the program) that specify properties of a
program

We assume that all these variables are drawn from a
universal set of variables V.

For every unprimed variable x ∈ V, its primed version x′

is also in V.

Each variable has a type.

Software Specification and Verification, Fall 2009: Reactive Systems – 6/39

IM NTU

Assertions

For describing a system and its specification, we
assume an underlying first-order assertion language
over V.

The language provides the following elements:
Expressions (corresponding to first-order terms):
variables, constants, and functions applied to
expressions
Atomic formulae:
propositions or boolean variables and predicates
applied to expressions
Assertions or state formulae (corresponding to
first-order formulae):
atomic formulae, boolean connectives applied to
formulae, and quantifiers applied to formulae

Software Specification and Verification, Fall 2009: Reactive Systems – 7/39

IM NTU

Fair Transition Systems

A fair transition system (FTS) P is a tuple 〈V,Θ, T ,J , C〉:

V ⊆ V: a finite set of typed state variables, including
data and control variables. A (type-respecting)
valuation of V is called a V -state or simply state. The
set of all V -states is denoted ΣV .

Θ : the initial condition, an assertion characterizing the
initial states.

T : a set of transitions, including the idling transition.
Each transition is associated with a transition relation,
relating a state and its successor state(s).

J ⊆ T : a set of just (weakly fair) transitions.

C ⊆ T : a set of compassionate (strongly fair) transitions.

Software Specification and Verification, Fall 2009: Reactive Systems – 8/39

IM NTU

Transitions of an FTS

The transition relation of a transition τ ∈ T is expressed as
an assertion ρτ (V, V ′):

Example: x = 1 ∧ x′ = 0.
For s, s′ ∈ ΣV , 〈s, s′〉 |= x = 1∧x′ = 0 holds if the value of x

is 1 in state s and the value of x is 0 in (the next) state s′.

τ -successor
State s′ is a τ -successor of s if 〈s, s′〉 |= ρτ (V, V ′)

τ(s)
∆
= {s′ | s′ is a τ -successor of s}.

enabledness of τ

En(τ)
∆
= (∃V ′)ρτ (V, V ′).

τ is enabled in a state if En(τ) holds in that state.
τ is enabled in state s iff s has some τ -successor.

Software Specification and Verification, Fall 2009: Reactive Systems – 9/39

IM NTU

Computations of an FTS

Given an FTS P = 〈V,Θ, T ,J , C〉, a computation of P is an
infinite sequence of states σ : s0, s1, s2, · · · satisfying:

Initiation: s0 is an initial state, i.e., s0 |= Θ.

Consecution: for every i ≥ 0, si+1 is a τ -successor of
state si, i.e., 〈si, si+1〉 |= ρτ (V, V ′), for some τ ∈ T . In this
case, we say that τ is taken at position i.

Justice: for every τ ∈ J , it is never the case that τ is
continuously enabled, but never taken, from some point
on.

Compassion: for every τ ∈ C, it is never the case that τ

is enabled infinitely often, but never taken, from some
point on.

The set of all computations of P is denoted by Comp(P).

Software Specification and Verification, Fall 2009: Reactive Systems – 10/39

IM NTU

An Example Program and Its FTS

Program ANY-Y:
x, y : natural initially x = y = 0

l0 : while x = 0 do
[

l1 : y := y + 1;
]

l2 :

‖

m0 : x := 1

m2 :

Informal description:
The program consists of an asynchronous
composition of two processes.
One process continuously increments y as long as it
finds x to be 0, while the other simply sets x to 1
(when it gets its turn to execute).
The executions of the program are all possible
interleavings of the steps of the individual processes.

Software Specification and Verification, Fall 2009: Reactive Systems – 11/39

IM NTU

An Example Program and Its FTS (cont.)

Program ANY-Y as an FTS PANY-Y = 〈V,Θ, T ,J , C〉:

V
∆
= {x, y : natural, π0 : {l0, l1, l2}, π1 : {m0,m1}}

Θ
∆
= π0 = l0 ∧ π1 = m0 ∧ x = y = 0

T
∆
= {τI , τl0 , τl1 , τm0

}, whose transition relations are
ρI : π′

0 = π0 ∧ π′

1 = π1 ∧ x′ = x ∧ y′ = y ,

ρl0 : π0 = l0 ∧ ((x = 0 ∧ π′

0 = l1) ∨ (x 6= 0 ∧ π′

0 = l2))

∧π′

1 = π1 ∧ x′ = x ∧ y′ = y
,

etc.

J
∆
= {τl0 , τl1 , τm0

}

C
∆
= ∅

Software Specification and Verification, Fall 2009: Reactive Systems – 12/39

IM NTU

Program M UX

Q0, Q1 : bool initially Q0 = Q1 = false

T : {0, 1} initially T = 0

P0 ::

l0 : loop forever do

l1 : remainder;

l2 : Q0 := true ;

l3 : T := 0;

l4 : await ¬Q1 ∨ T 6= 0;

l5 : critical;

l6 : Q0 := false;

‖

P1 ::

m0 : loop forever do

m1 : remainder;

m2 : Q1 := true;

m3 : T := 1;

m4 : await ¬Q0 ∨ T 6= 1;

m5 : critical;

m6 : Q1 := false;

Justice is sufficient in preventing individual starvation.

Software Specification and Verification, Fall 2009: Reactive Systems – 13/39

IM NTU

Strong Fairness (Compassion) Is Needed

Program MUX-SEM: mutual exclusion by a semaphore.

s : natural initially s = 1

l0 : loop forever do

l1 : remainder;

l2 : request(s);

l3 : critical;

l4 : release(s);

‖

m0 : loop forever do

m1 : remainder;

m2 : request(s);

m3 : critical;

m4 : release(s);

request(s)
∆
= 〈await s > 0 : s := s − 1〉

release(s)
∆
= s := s + 1

C: {τl2 , τm2
}

Software Specification and Verification, Fall 2009: Reactive Systems – 14/39

IM NTU

Linear Temporal Logic (LTL)

State formulae
Constructed from the underlying assertion language

Temporal formulae
All state formulae are also temporal formulae.
If p and q are temporal formulae and x a variable in V,
then the following are temporal formulae:
¬p, p ∨ q, p ∧ q, p → q, p ↔ q
©p, 3p, 2p, p U q, p W q
−©p, ∼©p, −3p, −2p, p S q, p B q

∃x : p, ∀x : p

Software Specification and Verification, Fall 2009: Reactive Systems – 15/39

IM NTU

Semantics of LTL

Temporal formulae are interpreted over an infinite
sequence of states, called a model, with respect to a
position in that sequence.

We will define the satisfaction relation (σ, i) |= ϕ (or ϕ

holds in (σ, i)), as the formal semantics of a temporal
formula ϕ over an infinite sequence of states
σ = s0, s1, s2, . . . , si, . . . and a position i ≥ 0.

A sequence σ satisfies a temporal formula ϕ, denoted
σ |= ϕ, if (σ, 0) |= ϕ.

Variables in V are partitioned into flexible and rigid
variables. A flexible variable may assume different
values in different states, while a rigid variable must
assume the same value in all states of a model.

Software Specification and Verification, Fall 2009: Reactive Systems – 16/39

IM NTU

Semantics of LTL (cont.)

For a state formula p:
(σ, i) |= p ⇐⇒ p holds at si.

Boolean combinations of formulae:
(σ, i) |= ¬p ⇐⇒ (σ, i) |= p does not hold.
(σ, i) |= p ∨ q ⇐⇒ (σ, i) |= p or (σ, i) |= q.
(σ, i) |= p ∧ q ⇐⇒ (σ, i) |= p and (σ, i) |= q.
(σ, i) |= p → q ⇐⇒ (σ, i) |= p implies (σ, i) |= q.
(σ, i) |= p ↔ q ⇐⇒ (σ, i) |= p if and only if (σ, i) |= q.

Alternatively, the latter three cases can be defined in
terms of ¬ and ∨, namely p ∧ q

∆
= ¬(¬p ∨ ¬q),

p → q
∆
= ¬p ∨ q, and p ↔ q

∆
= (p → q) ∧ (q → p).

Software Specification and Verification, Fall 2009: Reactive Systems – 17/39

IM NTU

Semantics of LTL: Future Operators

©p (next p):
(σ, i) |= ©p ⇐⇒ (σ, i + 1) |= p.

3p (eventually p or sometime p):
(σ, i) |= 3p ⇐⇒ for some k ≥ i, (σ, k) |= p.

2p (henceforth p or always p):
(σ, i) |= 2p ⇐⇒ for every k ≥ i, (σ, k) |= p.

p U q (p until q):
(σ, i) |= p U q ⇐⇒ for some k ≥ i, (σ, k) |= q and for every
j s.t. i ≤ j < k, (σ, j) |= p.

p W q (p wait-for q):
(σ, i) |= p W q ⇐⇒ for every k ≥ i, (σ, k) |= p, or for some
k ≥ i, (σ, k) |= q and for every j, i ≤ j < k, (σ, j) |= p.

Software Specification and Verification, Fall 2009: Reactive Systems – 18/39

IM NTU

Semantics of LTL: Future Operators (cont.)

It can be shown that, for every σ and i,
(σ, i) |= 3p iff (σ, i) |= true U p

(σ, i) |= 2p iff (σ, i) |= ¬3¬p

(σ, i) |= p W q iff (σ, i) |= 2p ∨ p U q

So, one can also take © and U as the primitive
operators and define others in terms of © and U :

3p
∆
= true U p

2p
∆
= ¬3¬p

p W q
∆
= 2p ∨ p U q

Software Specification and Verification, Fall 2009: Reactive Systems – 19/39

IM NTU

Semantics of LTL: Past Operators

−©p (previous p):
(σ, i) |= −©p ⇐⇒ (i > 0) and (σ, i − 1) |= p.

∼©p (before p):
(σ, i) |= ∼©p ⇐⇒ (i > 0) implies (σ, i − 1) |= p.

−3p (once p):
(σ, i) |= −3p ⇐⇒ for some k, 0 ≤ k ≤ i, (σ, k) |= p.

−2p (so-far p):
(σ, i) |= −2p ⇐⇒ for every k, 0 ≤ k ≤ i, (σ, k) |= p.

p S q (p since q):
(σ, i) |= p S q ⇐⇒ for some k, 0 ≤ k ≤ i, (σ, k) |= q and for
every j, k < j ≤ i, (σ, j) |= p.

Software Specification and Verification, Fall 2009: Reactive Systems – 20/39

IM NTU

Semantics of LTL: Past Operators (cont.)

p B q (p back-to q):
(σ, i) |= p B q ⇐⇒ for every k, 0 ≤ k ≤ i, (σ, k) |= p, or for
some k, 0 ≤ k ≤ i, (σ, k) |= q and for every j, k < j ≤ i,
(σ, j) |= p.

Software Specification and Verification, Fall 2009: Reactive Systems – 21/39

IM NTU

Semantics of LTL: Past Operators (cont.)

It can be shown that, for every σ and i,
(σ, i) |= −©p iff (σ, i) |= ¬ ∼©¬p

(σ, i) |= −3p iff (σ, i) |= true S p

(σ, i) |= −2p iff (σ, i) |= ¬ −3¬p

(σ, i) |= p B q iff (σ, i) |= −2p ∨ p S q

So, one can also take ∼© and S as the primitive
operators and define others in terms of ∼© and S :

−©p
∆
= ¬ ∼©¬p

−3p
∆
= true S p

−2p
∆
= ¬ −3¬p

p B q
∆
= −2p ∨ p S q

Software Specification and Verification, Fall 2009: Reactive Systems – 22/39

IM NTU

Semantics of LTL: Quantifiers

A sequence σ′ is called a u-variant of σ if σ′ differs from σ in
at most the interpretation given to u in each state.

(σ, i) |= ∃u : ϕ ⇐⇒ (σ′, i) |= ϕ for some u-variant σ′ of σ.

(σ, i) |= ∀u : ϕ ⇐⇒ (σ′, i) |= ϕ for every u-variant σ′ of σ.

Alternatively, ∀u : ϕ
∆
= ¬(∃u : ¬ϕ).

These definitions apply to both flexible and rigid variables.

Software Specification and Verification, Fall 2009: Reactive Systems – 23/39

IM NTU

Some LTL Conventions

Let first abbreviate ∼©false, which holds only at position
0; first means “this is the first state”.

We use u− to denote the previous value of u; by
convention, u− equals u at position 0.

Example: x = x− + 1.
In pure LTL,
(first ∧ x = x + 1) ∨ (¬first ∧ ∀u : −©(x = u) → x = u + 1).

We use u+ (or u′) to denote the next value of u, i.e., the
value of u at the next position.

Example: x+ = x + 1.
In pure LTL, ∀u : x = u → ©(x = u + 1).

These previous and next-value notations also apply to
expressions.

Software Specification and Verification, Fall 2009: Reactive Systems – 24/39

IM NTU

Validity

A state formula is state valid if it holds in every state.

A temporal formula p is (temporally) valid , denoted |= p,
if it holds in every model.

A state formula is P -state valid if it holds in every
P -accessible state (i.e., every state that appears in
some computation of P).

A temporal formula p is P -valid , denoted P |= p, if it
holds in every computation of P .

Software Specification and Verification, Fall 2009: Reactive Systems – 25/39

IM NTU

Equivalence and Congruence

Two formulae p and q are equivalent if p ↔ q is valid.
Example: p W q ↔ 2(−3¬p → −3q).

Two formulae p and q are congruent if 2(p ↔ q) is valid.
Example: ¬3p and 2¬p are congruent, as
2(¬3p ↔ 2¬p) is valid.

Two congruent formulae may replace each other in any
context.

Software Specification and Verification, Fall 2009: Reactive Systems – 26/39

IM NTU

A Hierarchy of Temporal Properties

Classes of temporal properties; p, q, pi, qi below are
arbitrary past temporal formulae

Safety properties: 2p

Guarantee properties: 3p

Obligation properties:
∧n

i=1(2pi ∨ 3qi)

Response properties: 23p

Persistence properties: 32p

Reactivity properties:
∧n

i=1(23pi ∨ 32qi)

The hierarchy

Safety
Guarantee

⊆ Obligation ⊆
Response
Persistence

⊆ Reactivity

Every temporal formula is equivalent to some reactivity
formula.

Software Specification and Verification, Fall 2009: Reactive Systems – 27/39

IM NTU

More Common Temporal Properties

Safety properties: 2p

Example: p W q is a safety property, as it is equivalent to
2(−3¬p → −3q).

Response properties
Canonical form: 23p

Variant: 2(p → 3q) (p leads-to q), which is equivalent
to 23(¬p B q).

Reactivity properties:
∧n

i=1(23pi ∨ 32qi)

(Simple) reactivity properties
Canonical form: 23p ∨ 32q

Variants: 23p → 23q or 2(23p → 3q), which is
equivalent to 23q ∨ 32¬p.
Extended form: 2((p ∧ 23r) → 3q)

Software Specification and Verification, Fall 2009: Reactive Systems – 28/39

IM NTU

Rules for Safety Properties

Rule INV
I1. Θ → ϕ

I2. ϕ → q

I3. {ϕ} T {ϕ}

2q

where {p} T {q} means {p} τ {q} (i.e., ρτ ∧ p → q′) for every
τ ∈ T

The auxiliary assertion ϕ is called an inductive invariant ,
as it holds initially and is preserved by every transition.

This rule is sound and (relatively) complete for
establishing P -validity of the future safety formula 2q

(where q is a state formula).

Software Specification and Verification, Fall 2009: Reactive Systems – 29/39

IM NTU

A Safety Property of Program M UX-SEM

Mutual exclusion: 2(¬(π0 = l3 ∧ π1 = m3)), which is not
inductive.

The inductive ϕ needed:

y ≥ 0 ∧ (π0 = l3) + (π0 = l4) + (π1 = m3) + (π1 = m4) + y = 1

where true and false are equated respectively with 1 and
0.

Software Specification and Verification, Fall 2009: Reactive Systems – 30/39

IM NTU

Rules for Response Properties

Rule J-RESP (for a just transition τ ∈ J)

J1. 2(p → (q ∨ ϕ))

J2. {ϕ} T {q ∨ ϕ}

J3. {ϕ} τ {q}

J4. 2(ϕ → (q ∨ En(τ)))

2(p → 3q)

This is a “one-step” rule that relies on a helpful just
transition.

Software Specification and Verification, Fall 2009: Reactive Systems – 31/39

IM NTU

Rules for Response Properties (cont.)

Analogously, there is a one-step rule that relies on a helpful
compassionate transition.

Rule C-RESP (for a compassionate transition τ ∈ C)

C1. 2(p → (q ∨ ϕ))

C2. {ϕ} T {q ∨ ϕ}

C3. {ϕ} τ {q}

C4. T − {τ} ⊢ 2(ϕ → 3(q ∨ En(τ)))

2(p → 3q)

Premise C4 states that the proof obligation should be
carried out for a smaller program with T − {τ} as the set of
transitions.

Software Specification and Verification, Fall 2009: Reactive Systems – 32/39

IM NTU

Rules for Response Properties (cont.)

Rule M-RESP (monotonicity) and Rule T-RESP (transitivity)

2(p → r),2(t → q)

2(r → 3t)

2(p → 3q)

2(p → 3r)

2(r → 3q)

2(p → 3q)

These rules belong to the part for proving general temporal
validity. They are convenient, but not necessary when we
have a relatively complete rule that reduce program validity
directly to assertional validity.

Software Specification and Verification, Fall 2009: Reactive Systems – 33/39

IM NTU

Rules for Response Properties (cont.)

A ranking function maps finite sequences of states into a
well-founded set.

Rule W-RESP (with a ranking function δ)

W1. 2(p → (q ∨ ϕ))

W2. 2([ϕ ∧ (δ = α)] → 3[q ∨ (ϕ ∧ δ ≺ α)])

2(p → 3q)

Software Specification and Verification, Fall 2009: Reactive Systems – 34/39

IM NTU

Rules for Response Properties (cont.)

Let T = {τ1, · · · , τn}. ϕ denotes ϕ1 ∨ ϕ2 ∨ · · · ∨ ϕn and δ is a
ranking function.

Rule F-RESP

F1. 2(p → (q ∨ ϕ))

for i = 1, · · · ,m

F2. {ϕi ∧ (δ = α)} T {q ∨ (ϕ ∧ (δ ≺ α)) ∨ (ϕi ∧ (δ � α))}

F3. {ϕi ∧ (δ = α)} τi {q ∨ (ϕ ∧ (δ ≺ α))}

J4. 2(ϕi → (q ∨ En(τi))), if τi ∈ J

C4. T − {τi} ⊢ 2(ϕi → 3(q ∨ En(τi))), if τi ∈ C

2(p → 3q)

Rule F-RESP is (relatively) complete for proving the
P-validity of any response formula of the form 2(p → 3q).

Software Specification and Verification, Fall 2009: Reactive Systems – 35/39

IM NTU

Rules for Reactivity Properties

Rule B-REAC

B1. 2(p → (q ∨ ϕ))

B2. {ϕ ∧ (δ = α)} T {q ∨ (ϕ ∧ (δ � α))}

B3. 2([ϕ ∧ (δ = α) ∧ r] → 3[q ∨ (δ ≺ α)])

2((p ∧ 23r) → 3q)

For programs without compassionate transitions, Rule
B-REAC is (relatively) complete for proving the P-validity of
any (simple, extended) reactivity formula of the form
2((p ∧ 23r) → 3q).

Software Specification and Verification, Fall 2009: Reactive Systems – 36/39

IM NTU

Fair Discrete Systems (cont.)

An FDS D is a tuple 〈V,Θ, ρ,J , C〉:
V ⊆ V: A finite set of typed state variables,
containing data and control variables.
Θ : The initial condition, an assertion characterizing
the initial states.
ρ : The transition relation, an assertion relating the
values of the state variables in a state to the values
in the next state.
J = {J1, · · · , Jk} : A set of justice requirements (weak
fairness).
C = {〈p1, q1〉, · · · , 〈pn, qn〉} : A set of compassion
requirements (strong fairness).

Software Specification and Verification, Fall 2009: Reactive Systems – 37/39

IM NTU

Fair Discrete Systems (cont.)

So, FDS is a slight variation of the model of fair
transition system.

The main difference between the FDS and FTS models
is in the representation of fairness constraints.

FDS enables a unified representation of fairness
constraints arising from both the system being verified,
and the temporal property.

A computation of D is an infinite sequence of states
σ = s0, s1, s2, · · · satisfying Initiation, Consecution,
Justice, and Compassion conditions.

Software Specification and Verification, Fall 2009: Reactive Systems – 38/39

IM NTU

Program M UX-SEM as an FDS

Program MUX-SEM: mutual exclusion by a semaphore.

s : natural initially s = 1

l0 : loop forever do

l1 : remainder;

l2 : request(s);

l3 : critical;

l4 : release(s);

‖

m0 : loop forever do

m1 : remainder;

m2 : request(s);

m3 : critical;

m4 : release(s);

request(s)
∆
= 〈await s > 0 : s := s − 1〉

release(s)
∆
= s := s + 1

C: {(at_l2 ∧ s > 0, at_l3), (at_m2 ∧ s > 0, at_m3)}

Software Specification and Verification, Fall 2009: Reactive Systems – 39/39

	Computational vs. Reactive Programs
	Computational vs. Reactive Programs (cont.)
	The Framework
	Three Kinds of Validity
	Variables
	Assertions
	Fair Transition Systems
	Transitions of an FTS
	Computations of an FTS
	An Example Program and Its FTS
	An Example Program and Its FTS (cont.)
	Program 	extsc {Mux}
	Strong Fairness (Compassion) Is Needed
	Linear Temporal Logic (LTL)
	Semantics of LTL
	Semantics of LTL (cont.)
	Semantics of LTL: Future Operators
	Semantics of LTL: Future Operators (cont.)
	Semantics of LTL: Past Operators
	Semantics of LTL: Past Operators (cont.)
	Semantics of LTL: Past Operators (cont.)
	Semantics of LTL: Quantifiers
	Some LTL Conventions
	Validity
	Equivalence and Congruence
	A Hierarchy of Temporal Properties
	More Common Temporal Properties
	Rules for Safety Properties
	A Safety Property of Program 	extsc {Mux-Sem}
	Rules for Response Properties
	Rules for Response Properties (cont.)
	Rules for Response Properties (cont.)
	Rules for Response Properties (cont.)
	Rules for Response Properties (cont.)
	Rules for Reactivity Properties
	Fair Discrete Systems (cont.)
	Fair Discrete Systems (cont.)
	Program 	extsc {Mux-Sem} as an FDS

