An Introduction to the Z Notation
 (Based on [J.Woodcock and J.Davies 1996; J.M. Spivey 1998])

Chen-Ming Yao

Dept. of Information Management National Taiwan University

November 11, 2009

Agenda

What Is Formal Specification

- What Is Z Notation
is: Mathematical Language Schema Language
Example: the Birthday Book
- Strengthening the Specification
- Implementing the Birthday Book

What is Formal Specification

- Use mathematical notation to describe in a precise way the properties which an information system must have, without unduly constraining the way in which these properties are achieved.
Formal specifications describe what the system must do without saying how it is to be done.
A formal specification can serve as a single, reliable reference point for those
who investigate the customer's needs, who implement programs to satisfy those needs, who test the results, and who write instruction manuals for the system.

Specification Qualities

A good specification should be
abstract and complete.

- clear and unambiguous.
- concise and comprehensible.
- easy to maintain and cost-effective.

Agenda

What Is Formal Specification

- What Is Z Notation
ie Mathematical Language
Schema Language
- Example: the Birthday Book
- Strengthening the Specification
- Implementing the Birthday Book

What is Z Notation

What: $Z(Z e d)$ is a formal specification language used for describing and modeling computing systems.

- The Z notation is based on

等 The mathematical language is used to describe objects and their properties. (e.g., sets, logic, and relations)
Mathematical objects and their properties can be collected together in schema. The schema language is used to describe the state of a system, and the ways in which that state may change.
The theory of refinement: the mathematical data types of specification to be implemented by more computer-oriented data type in a design.

What is Z Notation

We can use Z to

- describe data structures.
- model system state.
- explain design intentions.
verify development steps.

What is Z Notation

Qualitative Results

stage of development

Mathematical Language

- Set comprehension:

Given any non-empty set s, we can define a new set by considering only those elements of s that satisfy some property p.
Denote the set of elements x in s that satisfy predicate p.

$$
\{x: s \mid p\}
$$

Example: suppose that a red car is seen driving away from the scene of a crime. If Person denotes the set of all people, then the set to consider is given by

$$
\{x: \text { Person } \mid x \text { drives a red car }\}
$$

Mathematical Language

- Term comprehension:

We may also describe a set of objects constructed from certain elements of a given set.
Denote the set of all expressions e such that x is drawn from s and satisfies p.

$$
\{x: s \mid p \bullet e\}
$$

Example: In order to pursue their investigation of the crime, the authorities require a set of addresses to visit. This set is given by

$$
\{x: \operatorname{Person} \mid x \text { drives a red car } \bullet \operatorname{address}(x)\}
$$

Mathematical Language

A comprehension without a term part is equivalent to one in which the term is the same as the bound variable:

$$
\{x: s \mid p\}==\{x: s \mid p \bullet x\}
$$

The comprehension without a predicate part is equivalent to the one with the predicate true:

$$
\{x: s \bullet e\}==\{x: s \mid \text { true } \bullet e\}
$$

Mathematical Language

Denote the set of expression e formed as x and y range over a and b, respectively, and satisfy predicate p.

$$
\{x: a ; y: b \mid p \bullet e\}
$$

Example: an eyewitness account has established that the driver of the red car had an accomplice, and that this accomplice left a copy of the Daily Mail at the scene:
$\{x$: Person; $y:$ Person $\mid x$ is associated with y
$\wedge x$ drives a red car
$\wedge y$ reads the Daily Mail • $x\}$

Mathematical Language

- Power set:

If a is a set, then the set of all subsets of a is called the power set of a, and written \mathbb{P} a.

- Example:

$$
\begin{aligned}
& \mathbb{P}\{x, y\}=\{\emptyset,\{x\},\{y\},\{x, y\}\} \\
& \{1,2,3,4\} \in \mathbb{P} \mathbb{N}
\end{aligned}
$$

Mathematical Language

- Cartesian product :

If X and Y are sets, then the Cartesian product $X \times Y$ is the set of all possible ordered pairs (x, y), where x is an element of X and y is an element of Y :

$$
X \times Y=\{(x, y) \mid x \in X \text { and } y \in Y\}
$$

- Example:

$$
\{1,2\} \times\{3,4\}=\{(1,3),(1,4),(2,3),(2,4)\}
$$

Mathematical Language

- Types:

A type is a maximal set, at least within the confines of the current specification.
The Z notation has a single built-in type: the set of all integers \mathbb{Z} :

$$
\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

- Any other types may be constructed from \mathbb{Z}, or from user-defined basic types.
Every expression that appears in Z specification is associated with a unique type, and if the expression is defined, then the value of the expression is a member of its type.

Mathematical Language

- Relations:

Binary relations
Denotes the set of all relations between X and Y :

$$
X \leftrightarrow Y==\mathbb{P}(X \times Y)
$$

Maplet
The pair (x, y) can be written as $\mathrm{x} \mapsto \mathrm{y}$.

$$
\begin{aligned}
&-_{[X, Y]} \\
& \quad-\mapsto-X \times Y \rightarrow X \times Y \\
& \forall x: X ; y: Y \bullet x \mapsto y=(x, y)
\end{aligned}
$$

Mathematical Language

- Relations:

Domain and Range operator

$$
\begin{aligned}
& \operatorname{dom} R=\{x: X ; y: Y \mid x \mapsto y \in R \bullet x\} \\
& \operatorname{ran} R=\{x: X ; y: Y \mid x \mapsto y \in R \bullet y\}
\end{aligned}
$$

Mathematical Language

Domain and Range operator Example: Function-Drives

Mathematical Language

Domain and Range Example:
dom drives $=\{$ helen, indra, jim, kate $\}$
ran drives $=\{$ alfa, beetle, cortina $\}$

Mathematical Language

- Functions:

Partial functions
From X to Y is a relation that maps each element of X to at most one element of Y . The element of Y , if it exists, is written $f(x)$.

$$
\begin{aligned}
& X \mapsto Y==\left\{f: X \leftrightarrow Y \mid \forall x: X ; y_{1}, y_{2}: Y \bullet\right. \\
& \left.\left(x \mapsto y_{1}\right) \in f \wedge\left(x \mapsto y_{2}\right) \in f \Rightarrow y_{1}=y_{2}\right\}
\end{aligned}
$$

溇 Total functions
The set of total functions are partial functions whose domain is the whole of X. They relate each element of X to exactly one element of Y.

$$
X \rightarrow Y==\{f: X \rightarrow Y \mid \operatorname{dom} f=X\}
$$

Schema Language

We can write the text of a schema in one of two the following two forms:

> | Name |
| :--- |
| declaration |
| constraint |

or
Name $\widehat{=}$ [declaration \mid constraint $]$

Schema Language

```
Name \(\widehat{=}[a: Z ; c: \mathbb{P} Z \mid c \neq \phi \wedge a \in c]\)
```

Name
$a: Z$
$c: \mathbb{P} Z$
$c \neq \phi$
$a \in c$

Schema Language

We can use the language of schemas to describe the state of a system, and operation upon it.
Suppose that the state of a system is modeled by the following schema

State
a: A
$b: B$
P

Schema Language

To describe an operation upon the state, we use two copies of State: one representing the state before the operation; the other representing the state afterwards.

> | State $^{\prime}$ |
| :--- |
| $a^{\prime}: A$ |
| $b^{\prime}: B$ |
| $P\left[a^{\prime} / a, b^{\prime} / b\right]$ |

The constraint part of the schema is modified to reflect the new names of the state variables.

Schema Language

Then we can describe an operation by including both State and State' in the declaration part of a schema. For example,

> Operation State
> State
> $i ?: 1$
> $o!: O$

The behavior of the operation is described in the constraint part of the schema.
Note that the schema also includes an input component of type I and an output component of type O.

Schema Language

When a schema name appears in a declaration part of a schema, the result is a merging of declarations and a conjunction of constraints.

OperationOne State State ${ }^{\prime}$

OperationTwo
$a, a^{\prime}: A$
$b, b^{\prime}: B$
P
$P\left[a^{\prime} / a, b^{\prime} / b\right]$

Schema Language

Δ Schema can be applied whenever we wish to describe an operation that may change the state.
\square^{Δ} Schema
Schema
Schema'
Ξ Schema can be applied whenever we wish to describe an operation that does not change the state.

ESchema
Δ Schema
θ Schema $=\theta$ Schema ${ }^{\prime}$

Note: θ here means the valuation of variables in the schema.

Schema Language

Different aspects of the state can be described as separate schemas; these schemas may be combined in various ways using schema operators:
类 The logical schema operators:

The relational schema operators:

> ̊ - Sequential composition
> \gg - Piping

Schema Language

If S and T are two schemas, then their conjunction $S \wedge T$ is a schema whose declaration is a merge of the two declarations. whose constraint is a conjunction of the two constraints.

- Their disjunction $S \vee T$ is a schema whose declaration is a merge of the two declarations. whose constraint is a disjunction of the two constraints.

Schema Language

$$
\begin{aligned}
& {\left[\begin{array}{l}
S \\
a: A \\
b: B \\
P
\end{array}\right.} \\
& \hline\left[\begin{array}{l}
T \\
b: B \\
c: C \\
\hline Q
\end{array}\right.
\end{aligned}
$$

Schema Language

The schema $S \wedge T$ (conjunction) is equivalent to

$$
\left[\begin{array}{l}
S \wedge T \\
a: A \\
b: B \\
c: C \\
\hline P \wedge Q
\end{array}\right.
$$

The schema $S \vee T$ (disjunction) is equivalent to

$$
\begin{aligned}
& S \vee T \\
& a: A \\
& b: B \\
& c: C \\
& P \vee Q
\end{aligned}
$$

Agenda

What Is Formal Specification

- What Is Z Notation
ie Mathematical Language Schema Language
- Example: the Birthday Book
- Strengthening the Specification
- Implementing the Birthday Book

The Birthday Book

Basic three functions:
Add new birthday-name record.

- Find the birthday of a person.
- Give a date, return names of people whose birthday is exactly that day.

The Birthday Book

Given basic types:
[NAME, DATE]
Use a schema to describe the state of the birthday book:

> | BirthdayBook |
| :--- |
| known : P NAME |
| birthday : NAME \rightarrow DATE |
| known $=$ dom birthday |

known is the set of names with birthdays recorded.

- birthday is a function when applied to certain names, gives the birthdays associated with them.
invariant is relationship which is true in every state of the system.

The Birthday Book

One possible state of the system has three people in the set known, with their birthdays recorded by the function birthday:

```
known \(=\{\) Cindy, Randy, John \(\}\)
birthday \(=\)
\{Cindy \(\mapsto 7 / 5\),
Randy \(\mapsto 11 / 5\),
John \(\mapsto 6 / 2\}\).
```

The invariant is satisfied, because birthday records a date for exactly the three names in known.

The Birthday Book

```
BirthdayBook
known : \(\mathbb{P}\) NAME
birthday: NAME \(\rightarrow\) DATE
known = dom birthday
```

BirthdayBook'
known' : \mathbb{P} NAME
birthday ${ }^{\prime}:$ NAME \rightarrow DATE
$k_{n o w n}{ }^{\prime}=$ dom birthday ${ }^{\prime}$

The Birthday Book

Specify an operation to add new birthday-name record:

```
AddBirthday
\(\Delta\) BirthdayBook
BirthdayBook
BirthdayBook'
name? : NAME
date? : DATE
name? \(\notin\) known
birthday \({ }^{\prime}=\) birthday \(\cup\{\) name \(? \mapsto\) date \(?\}\)
```


The Birthday Book

We can prove known' $=$ known \cup \{name?\} from the specification of AddBirthday, using the invariants on the state before and after the operation:
known'
$=\operatorname{dom}$ birthday $^{\prime}$
$=\operatorname{dom}($ birthday $\cup\{$ name $? \mapsto$ date $\}\})$
[invariant after]
[spec. of AddBirthday]
$=\operatorname{dom}$ birthday $\cup \operatorname{dom}\{$ name $? \mapsto$ date? $\}$
[fact about dom]
$=\operatorname{dom}$ birthday $\cup\{$ name? $\}$
$=k n o w n \cup\{$ name ? $\}$.

```
Note: Laws of Domain
dom}{Q\cupR}=\operatorname{dom}{Q}\cup\operatorname{dom}{R
dom}{\mp@subsup{x}{1}{}\mapsto\mp@subsup{y}{1}{},..,\mp@subsup{x}{1}{}\mapsto\mp@subsup{x}{n}{}}={\mp@subsup{x}{1}{},..,\mp@subsup{x}{n}{}
```


The Birthday Book

Find the birthday of a person:

```
FindBirthday
\(\Xi\) BirthdayBook
name? : NAME
date! : DATE
name? \(\in\) known
date \(!=\) birthday (name?)
```


The Birthday Book

Give a date, return names of people whose birthday is exactly that day.

Remind
EBirthdayBook
today? : DATE
names! : \mathbb{P} NAME

$$
\text { names }!=\{n: \text { known } \mid \operatorname{birthday}(n)=\text { today } ?\}
$$

The Birthday Book

To finish the specification, we must say what state the system is in when it is first started. This is the initial state of the system, and it also is specified by a schema:

InitBirthdayBook
BirthdayBook
known = Ø

Agenda

What Is Formal Specification

- What Is Z Notation
ie Mathematical Language Schema Language
Example: the Birthday Book
- Strengthening the Specification
- Implementing the Birthday Book

Strengthening the Specification

- A correct implementation of our specification will faithfully record birthdays and display them, so long as there are no mistakes in the input. But the specification has a serious flaw:
add a birthday for someone already known to the system.
find the birthday of someone not known.
- The specification we have described clearly and concisely the behavior for correct input, and modifying it to describe the handling of incorrect input could only make it obscure.

Strengthening the Specification

- Better solution :
describe, separately from the first specification, the errors which might be detected and the desired responses to them.
inse schema operators (e.g., \wedge, \vee) to combine the two descriptions into a stronger specification.
Add an extra output result! to each operation on the system. When an operation is successful, this output will take the value ok, but it may take other values when an error is detected.
The following free type definition defines REPORT to be a set containing exactly these three values:

$$
R E P O R T::=o k\left|a l r e a d y _k n o w n\right| \text { not_known }
$$

Free Type

- Free type adds nothing to the power of Z, but it makes it easier to describe recursive structures such as lists and trees.
A free type T is defined as follows:

$$
T::=c_{1}|\ldots| c_{m}\left|d_{1}\left\langle\left\langle E_{1}\right\rangle\right\rangle\right| \ldots \mid d_{n}\left\langle\left\langle E_{n}\right\rangle\right\rangle
$$

where disjoint $\left\langle\left\{c_{1}\right\}, \ldots,\left\{c_{m}\right\}\right.$, ran d_{1}, \ldots, ran $\left.d_{n}\right\rangle$, c_{1}, \ldots, c_{m} are constant expressions, d_{1}, \ldots, d_{m} are constructor functions, and E_{1}, \ldots, E_{m} are expressions that may depend on set T.

Free Type Example

Example:
20 The following free type definition, with seven distinct constants, is a structure of colors of the rainbow:

$$
\text { Colors }::=\text { red } \mid \text { orange } \mid \text { yellow } \mid \text { green } \mid \text { blue } \mid \text { indigo } \mid \text { violet }
$$

The following free type definition introduces a new type constructed using a single constant zero and a single constructor function succ:

$$
\text { nat }::=\text { zero } \mid \operatorname{succ}\langle\langle n a t\rangle\rangle
$$

3. This type has a structure which is exactly that of the natural numbers (zero corresponds to 0 , and succ corresponds to the function +1).

Strengthening the Specification

We can define a schema Success which just specifies that the result should be ok:

Success \qquad result! : REPORT result! = ok

Then we can combine AddBirthday operation with Success by conjunction operator \wedge :

AddBirthday \wedge Success
This describes an operation for correct input.

Strengthening the Specification

Here is an operation which produces the report already_known when its input name? is already a member of known:

AlreadyKnown

```
\XiBirthdayBook
name?: NAME
result!: REPORT
name? \in known
result! = already_known
```

We can combine this description with the previous one to give a specification for a robust version of AddBirthday:

$$
\text { RAddBirthday } \widehat{=}(\text { AddBirthday } \wedge \text { Success }) \vee \text { AlreadyKnown. }
$$

Strengthening the Specification

RAddBirthday
Δ BirthdayBook
name? : NAME
date? : DATE
result! : REPORT
(name? \notin known \wedge
birthday ${ }^{\prime}=$ birthday $\cup\{$ name $? \mapsto$ date $?\} \wedge$
result! =ok) \vee
(name? \in known \wedge
birthday ${ }^{\prime}=$ birthday \wedge
result! = already_known)

Strengthening the Specification

A robust version of the FindBirthday operation must be able to report if the input name is not known:

```
NotKnown
\XiBirthdayBook
name?: NAME
result!: REPORT
name? & known
result! = not_known
```

The robust operation either behaves as described by FindBirthday and reports success, or reports that the name was not known:

RFindBirthday $\widehat{=}($ FindBirthday \wedge Success $) \vee$ NotKnown.

Strengthening the Specification

The Remind operation never results in an error, so the robust version need only add the report of success.

RRemind $\widehat{=}$ Remind \wedge Success

Agenda

What Is Formal Specification

- What Is Z Notation
ie Mathematical Language Schema Language
Example: the Birthday Book
- Strengthening the Specification
- Implementing the Birthday Book

Implementing the Birthday Book

When a program is developed from a specification, two sorts of design decision usually need to be taken:
涉 The data described by mathematical data types in the specification must be implemented by data structures of the programming language
The operations described by predicates in the specification must be implemented by algorithms expressed in a programming language

- Refinement:

溇 Data refinement relates an abstraction data type (e.g., sets) to a concrete data type (e.g., arrays).
3. Operation refinement converts a specification of an operation on a system into an implementable program (e.g., a procedure).

Implementing the Birthday Book

We choose to represent the birthday book with two arrays, which might be declared by:
names: array [1..] of NAME
dates: array [1..] of DATE
These arrays can be modeled mathematically by functions from the set \mathbb{N}_{1} of strictly positive integers to NAME or DATE:

$$
\begin{aligned}
& \text { names }: \mathbb{N}_{1} \rightarrow \text { NAME } \\
& \text { dates }: \quad \mathbb{N}_{1} \rightarrow \text { DATE }
\end{aligned}
$$

Mathematical Language

Numbers and finiteness:
Natural numbers

$$
\mathbb{N}==\{n: \mathbb{Z} \mid n \geq 0\}
$$

Strictly positive integers

$$
\mathbb{N}_{1}==\mathbb{N} \backslash\{0\}
$$

Implementing the Birthday Book

The element names $[i]$ of the array is simply the value names (i) of the function, and the assignment names $[i]:=v$ is exactly described by the specification:

$$
\text { names' }=\text { names } \oplus\{i \mapsto v\}
$$

Mathematical Language

- Relations:

Domain subtraction

$$
A \triangleleft R=\{x: X ; y: Y \mid x \mapsto y \in R \wedge x \notin A \bullet x \mapsto y\}
$$

An example of domain subtraction If we are concerned only with people who are not called 'Helen', then the relation $\{$ Henlen $\} \notin$ Drives tells us all that we want to know. It is a relation with three elements:

$$
\{\text { Indra } \mapsto \text { alfa, Jim } \mapsto \text { beetle, Kate } \mapsto \text { cortina }\}
$$

Note: About Relation
Domain Restriction $A \triangleleft R=\{x: X ; y: Y \mid x \mapsto y \in R \wedge x \in A \bullet x \mapsto y\}$
Range Restriction $R \triangleright B=\{x: X ; y: Y \mid x \mapsto y \in R \wedge y \in B \bullet x \mapsto y\}$
Domain Subtraction $A \notin R=\{x: X ; y: Y \mid x \mapsto y \in R \wedge x \notin A \bullet x \mapsto y\}$
Range Subtraction $R \triangleright B=\{x: X ; y: Y \mid x \mapsto y \in R \wedge y \notin B \bullet x \mapsto y\}$

Mathematical Language

Mathematical Language

- Relations:

Overriding
If f and g are functions of the same type, then $f \oplus g$ is a function that agrees with f everywhere outside the domain of g; but agrees with g where g is defined.

$$
\begin{aligned}
& {[X, Y]} \\
& -\oplus]_{-}:(X \leftrightarrow Y) \times(X \leftrightarrow Y) \rightarrow(X \leftrightarrow Y) \\
& \forall f, g: X \leftrightarrow Y \bullet \\
& f \oplus g=(\operatorname{dom} g \not f) \cup g
\end{aligned}
$$

$$
\text { names }^{\prime}=\text { names } \oplus\{i \mapsto v\}
$$

Overriding

Original

Overriding

Update

Overriding

Override

Implementing the Birthday Book

We describe the state space of the program as a schema. There is another variable hwm (for 'high water mark'); it shows how much of the arrays is in use.

```
BirthdayBook known : \(\mathbb{P}\) NAME
birthday:NAME }->\mathrm{ DATE
known = dom birthday
```

BirthdayBook1
names : $\mathbb{N}_{1} \rightarrow$ NAME
dates : $\mathbb{N}_{1} \rightarrow$ DATE $h w m: \mathbb{N}$
$\forall i, j: 1 . . h w m \bullet i \neq j \Rightarrow \operatorname{names}(i) \neq \operatorname{names}(j)$

Implementing the Birthday Book

We can document this with a schema $A b s$ (abstraction schema) that defines the abstraction relation between the abstract state space BirthdayBook and the concrete state space BirthdayBook1:

Abs
BirthdayBook
BirthdayBook1
known $=\{i: 1 . . h w m \bullet$ names $(i)\}$
$\forall i: 1 . . h w m \bullet \operatorname{birthday}(\operatorname{names}(i))=\operatorname{dates}(i)$

Implementing the Birthday Book

To add a new name, we increase hwm by one, and fill in the name and date in the arrays:

```
AddBirthday1
\DeltaBirthdayBook
name?: NAME
date?: DATE
\foralli:1..hwm \bullet name? }\not==\mathrm{ names(i)
hwm' = hwm +1
names' = names \bigoplus{hwm'}\mapsto\mathrm{ names?}
dates' = dates }\bigoplus{hwm' \mapsto date?
```

Note: Relationships of AddBirthday
name $? \notin$ known
birthday $^{\prime}=$ birthday $\cup\{$ name $? \mapsto$ date $?\}$

Correct Implementation

- Correct Implementation:

Suppose Spec is a schema describing a specification and Ref is a schema describing the action of a program.
A concrete schema is a correct implementation of abstract schema when
pre Spec \vdash pre Ref
(Safety: Any circumstance acceptable to Spec must be acceptable to Ref.)
溍 (pre Spec) \wedge Ref \vdash Spec
(Liveness: Any circumstance acceptable to Spec ,the behavior of Ref must be allowed by spec.

- In this situation we shall write Spec $\sqsubseteq \operatorname{Ref}$
(The sign ' \sqsubseteq ' is the sign of refinement relation.)

Implementing the Birthday Book

To show that AddBirthday 1 is a correct implementation of AddBirthday, we have the following two proof obligations.
\% pre AddBirthday \vdash pre AddBirthday 1
(pre AddBirthday) \wedge AddBirthday $1 \vdash$ AddBirthday

The First Statement

The operation AddBirthday is legal exactly if its pre-condition name? \notin known is satisfied.

The predicate known $=\{i: 1 . . h w m \bullet$ names $(i)\}$, from $A b s$ tells us that name? is not one of the elements names(i):
$\forall i: 1 . . h w m \bullet$ names? \neq names (i)

- It is the pre-condition of AddBirthday1, so the first proof obligation pre AddBirthday \vdash pre AddBirthday 1 is true.

The Second Statement

Think about the concrete states before and after an execution of AddBirthday1, and the abstract states they represent according to Abs.

- The two concrete states are related by AddBirthday1, and we must show that the two abstract states are related as prescribed by AddBirthday:

$$
\text { Prove that birthday' = birthday } \cup\{\text { name } ? \mapsto \text { date? }\}
$$

The Second Statement (Cont'd)

The domains of these two functions are the same, because
dom birthday'
$=$ known $^{\prime}$
[invariant after]
[from $A b s{ }^{\prime}$]
$=\left\{i: 1 . . h w m^{\prime} \bullet\right.$ names $\left.^{\prime}(i)\right\}$
$=\left\{i: 1 . . h w m \bullet\right.$ names $\left.^{\prime}(i)\right\} \cup\left\{\right.$ names $^{\prime}\left(\right.$ hwm $\left.\left.^{\prime}\right)\right\}$
$\left[h w m^{\prime}=h w m+1\right]$
$=\{i: 1 . . h w m \bullet$ names $(i)\} \cup\{$ names? $\}$ [names ${ }^{\prime}=$ names $\oplus\left\{\right.$ hwm $^{\prime} \mapsto$ names? $\left.\}\right]$
$=$ known $\cup\{$ names? $\}$
$=$ dom birthday $\cup\{$ names? $\}$

Note: Laws of Domain
$\operatorname{dom}\left\{x_{1} \mapsto y_{1}, . ., x_{1} \mapsto x_{n}\right\}=\left\{x_{1}, . ., x_{n}\right\}$

The Second Statement (Cont'd)

- There is no change in the part of arrays which was in use before the operation.
So for all i in the range 1 ..hwm:

$$
\text { names }^{\prime}(i)=\text { names }(i) \wedge \operatorname{dates}^{\prime}(i)=\operatorname{dates}(i)
$$

For any i in this range,

$$
\begin{aligned}
& \text { birthday }{ }^{\prime}\left(\text { names }^{\prime}(i)\right) \\
& \quad=\operatorname{dates}^{\prime}(i) \\
& \quad=\operatorname{dates}(i) \\
& \quad=\operatorname{birthday}(\operatorname{names}(i))
\end{aligned}
$$

[from $A b s^{\prime}$]
[dates unchanged]
[from $A b s$]

The Second Statement (Cont'd)

- For the new name, stored at index $h w m^{\prime}=h w m+1$

$$
\begin{aligned}
& \text { birthday'(names?) } \\
& =\operatorname{birthday}^{\prime}\left(\text { names }^{\prime}\left(\text { hwm }^{\prime}\right)\right)\left[\text { names }^{\prime}\left(\text { hwm }^{\prime}\right)=\text { name }^{\prime}\right] \\
& =\operatorname{dates}^{\prime}\left(h w m^{\prime}\right) \quad\left[\text { from } A b s^{\prime}\right] \\
& =\text { date? } \\
& \text { [spec. of Addbirthday1] }
\end{aligned}
$$

The second proof obligation (pre AddBirthday) \wedge AddBirthday $1 \vdash$ AddBirthday is also true.

- It shows that both of the proof obligation is true, so we can conclude that AddBirthday 1 is a correct implementation of AddBirthday.

Refinement of the Birthday Book

Implementing the Birthday Book

The second operation, FindBirthday, is implemented by the following operation, again described in terms of the concrete state:

FindBirthday1
JBirthdayBook
name?: NAME date! : DATE
$\exists i: 1 . . h w m \bullet$ name $?=\operatorname{names}(i) \wedge$ date $!=\operatorname{dates}(i)$

Check the pre-conditions:

$$
\begin{aligned}
& \text { date }!=\operatorname{dates}(i) \\
& =\operatorname{birthday}(\text { names }(i)) \\
& =\operatorname{birthday}(\text { name } ?)
\end{aligned}
$$

[spec. of FindBirthday1] [from $A b s$]
[spec. of FindBirthday1]

Note: Relationships of FindBirthday
name? \in known
date! $=$ birthday (name?)

Implementing the Birthday Book

The operation Remind poses a new problem, because its output cards is a set of names. Here is a schema $A b s C a r d s$ that defines the abstraction relation:

```
AbsCards
    cards:\mathbb{P NAME}
    cardlist: :N N}->\mathrm{ NAME
    ncards:\mathbb{N}
    cards = {i:1..ncards \bullet cardlist(i)}
```


Implementing the Birthday Book

The concrete operation can now be described: it produces as outputs cardlist and ncards:

Remind 1
EBirthdayBook1
today?: DATE
cardlist! : $\mathbb{N}_{1} \rightarrow$ NAME
ncards! : \mathbb{N}
\{i:1..ncards! • cardlist!(i)\}
$=\{j: 1 . . h w m \mid \operatorname{dates}(j)=$ today? \bullet names $(j)\}$

Note: Relationships of Remind names $!=\{n:$ known \mid birthday $(n)=$ today $?\}$

Implementing the Birthday Book

The initial state of the program has $h w m=0$:

InitBirthdayBook1

BirthdayBook1

$$
h w m=0
$$

known

$$
\begin{aligned}
& =\{i: 1 . . h w m \bullet \text { names }(i)\} \\
& =\{i: 1 . .0 \bullet \text { names }(i)\} \\
& =\emptyset
\end{aligned}
$$

[from $A b s$]
[from InitBirthdayBook1]
$[1 . .0=\emptyset]$
Note: Relationships of InitBirthdayBook known $=\emptyset$

More about Relation

Domain $\operatorname{dom} R=\{x: X ; y: Y \mid x \mapsto y \in R \bullet x\}$ Range $\operatorname{ran} R=\{x: X ; y: Y \mid x \mapsto y \in R \bullet y\}$
Domain Restriction

$$
A \triangleleft R=\{x: X ; y: Y \mid x \mapsto y \in R \wedge x \in A \bullet x \mapsto y\}
$$

Range Restriction $R \triangleright B=\{x: X ; y: Y \mid x \mapsto y \in R \wedge y \in B \bullet$

$$
x \mapsto y\}
$$

Domain Subtraction

$$
A \notin R=\{x: X ; y: Y \mid x \mapsto y \in R \wedge x \notin A \bullet x \mapsto y\}
$$

Range Subtraction $R \triangleright B=\{x: X ; y: Y \mid x \mapsto y \in R \wedge y \notin B$

$$
x \mapsto y\}
$$

More about Functions

Partial Functions: each element of the source set is mapped to at most one element of the target.
Total Functions: each element of the source set is mapped to some element of the target.

- Injective (1 to 1): each element of the domain is mapped to a different element of the target.
, \rightarrow : partial, injective functions
\mapsto : total, injective functions
Surjective (onto): the range of the function is the whole of the target
\rightarrow : partial, surjective functions
\rightarrow : total, surjective functions
Bijective (1 to 1 correspondence): both injective and surjective \mapsto : total, bijective functions

Thank you for listening

