
Concurrency:
Hoare Logic (III)

(Based on [Apt and Olderog 1997; Lamport 1980; Owicki
and Gries 1976])

Yih-Kuen Tsay

Dept. of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) Concurrency: Hoare Logic (III) SSV 2010 1 / 23

Sequential vs. Concurrent Programs

Sequential programs (components) with the same input/output
behavior may behave differently when executed in parallel with
some other component.

Consider two program components:

S1
∆
= x := x + 2 and S ′1

∆
= x := x + 1; x := x + 1.

Both increment x by 2.

When executed in parallel with

S2
∆
= x := 0,

S1 and S ′1 behave differently.

Yih-Kuen Tsay (IM.NTU) Concurrency: Hoare Logic (III) SSV 2010 2 / 23

Sequential vs. Concurrent Programs (cont.)

Indeed,
{true} [S1‖S2] {x = 0 ∨ x = 2}

i.e.,
{true} [x := x + 2‖x := 0] {x = 0 ∨ x = 2}

but
{true} [S ′1‖S2] {x = 0 ∨ x = 1 ∨ x = 2}

i.e.,

{true} [x := x + 1; x := x + 1‖x := 0] {x = 0 ∨ x = 1 ∨ x = 2}.

Yih-Kuen Tsay (IM.NTU) Concurrency: Hoare Logic (III) SSV 2010 3 / 23

Atomicity and Interleaving

An action A (a statement or boolean expression) of a
component is called atomic if during its execution no other
components may change the variables of A.

The computation of each component can be thought of as a
sequence of executions of atomic actions.

An atomic action is said to be enabled if its containing
component is ready to execute it.

Atomic actions enabled in different components are executed in
an arbitrary sequential order; this is called the interleaving model.

Yih-Kuen Tsay (IM.NTU) Concurrency: Hoare Logic (III) SSV 2010 4 / 23

Extending Hoare Logic

The best-known attempt at generalizing Hoare Logic to concurrent
programs is:

S. Owicki and D. Gries. An axiomatic proof technique for
parallel programs. Acta Informatica, 6:319-340, 1976.

Proof outlines (for terminating programs)

Interference freedom

Auxiliary variables

Yih-Kuen Tsay (IM.NTU) Concurrency: Hoare Logic (III) SSV 2010 5 / 23

Proof Outlines

Let S∗ stand for a program S annotated with assertions. A proof
outline (for partial correctness) is defined by the following formation
rules.

{P} skip {P} (Skip)

{Q[E/x]} x := E {Q} (Assignment)

{P} S∗1 {R} {R} S∗2 {Q}
{P} S∗1 ; {R} S∗2 {Q}

(Sequence)

{P ∧ B} S∗1 {Q} {P ∧ ¬B} S∗2 {Q}
{P} if B then {P ∧ B} S∗1 {Q} else {P ∧ ¬B} S∗2 {Q} fi {Q}

(Conditional)

Yih-Kuen Tsay (IM.NTU) Concurrency: Hoare Logic (III) SSV 2010 6 / 23

Atomic Regions

We enclose multiple statements in a pair of “〈” and “〉” to form
atomic regions such as 〈S1; S2〉, indicating that the enclosed
statements are to be executed atomically.

Proof rule:

{P} S {Q}
{P} 〈S〉 {Q}

(Atomic Region)

Proof outline formation:

{P} S∗ {Q}
{P} 〈S∗〉 {Q}

(Atomic Region)

A proof outline with atomic regions is standard if every normal
subprogram is preceded by exactly one assertion (and there are
no other assertions).

Yih-Kuen Tsay (IM.NTU) Concurrency: Hoare Logic (III) SSV 2010 7 / 23

Interference Freedom

A standard proof outline {pi} S∗i {qi} does not inter-
fere with another proof outline {pj} S∗j {qj} if the following holds:

For every normal assignment or atomic region R in Si

and every assertion r in {pj} S∗j {qj},

{r ∧ pre(R)} R {r}.

Given a parallel program [S1‖ · · · ‖Sn], the standard proof
outlines {pi} S∗i {qi}, 1 ≤ i ≤ n, are said to be interference free
if none of the proof outlines interferes with any other.

Yih-Kuen Tsay (IM.NTU) Concurrency: Hoare Logic (III) SSV 2010 8 / 23

Interference Freedom (cont.)

Proof rule:

{pi} S∗i {qi}, 1 ≤ i ≤ n, are standard and interference free

{
∧n

i=1 pi} [S1‖ · · · ‖Sn] {
∧n

i=1 qi}

Yih-Kuen Tsay (IM.NTU) Concurrency: Hoare Logic (III) SSV 2010 9 / 23

An Example

{x = 0}
x := x + 2
{x = 2}

{true}
x := 0
{x = 0}

are not interference free.

{x = 0}
x := x + 2
{x = 0 ∨ x = 2}

{true}
x := 0
{x = 0 ∨ x = 2}

are interference free and yield

{x = 0} [x := x + 2‖x := 0] {x = 0 ∨ x = 2}.

Yih-Kuen Tsay (IM.NTU) Concurrency: Hoare Logic (III) SSV 2010 10 / 23

An Example (cont.)

Can we prove the following stronger claim?

{true} [x := x + 2‖x := 0] {x = 0 ∨ x = 2}

This is not possible if we rely only on the proof rules introduced
so far.

It is easy to see that we must prove, for some q1 and q2,

{true} [x := x + 2] {q1} and {true} [x := 0] {q2}.

From {true} [x := x + 2] {q1}, q1 equals true and hence q2

along must imply (x = 0 ∨ x = 2).

From {true} [x := 0] {q2}, q2[0/x] holds.
From {true ∧ q2} [x := x + 2] {q2}, q2 → q2[x + 2/x] holds.
By induction, q2 holds for all even x ’s, a contradiction.

Yih-Kuen Tsay (IM.NTU) Concurrency: Hoare Logic (III) SSV 2010 11 / 23

Auxiliary Variables

A variable z in a program is called auxiliary if it only appears in
assignments of the form z := t.

Rule for auxiliary variables

{p} S {q}
{p} S0 {q}

(Auxiliary Variables)

where S0 is obtained from S by deleting some assignments with
an auxiliary variable that does not occur free in q.

Yih-Kuen Tsay (IM.NTU) Concurrency: Hoare Logic (III) SSV 2010 12 / 23

An Example (cont.)

{¬done}
〈x := x + 2; done := true〉
{true}

{true}
x := 0
{(x = 0 ∨ x = 2) ∧ (¬done → x = 0)}.

are interference free and yield

{¬done}
[〈x := x + 2; done := true〉‖x := 0]
{(x = 0 ∨ x = 2) ∧ (¬done → x = 0)}

The conjunct (¬done → x = 0) can now be dropped (for our
purpose).

Yih-Kuen Tsay (IM.NTU) Concurrency: Hoare Logic (III) SSV 2010 13 / 23

An Example (cont.)

{true}
done := false;
{¬done}
[〈x := x + 2; done := true〉‖x := 0]
{x = 0 ∨ x = 2}

from which we infer

{true}
[x := x + 2‖x := 0]
{x = 0 ∨ x = 2}.

Yih-Kuen Tsay (IM.NTU) Concurrency: Hoare Logic (III) SSV 2010 14 / 23

The await Statement

Syntax:
await B then S end

The special case “await B then skip end” is simply written as
“await B”.

Semantics:
If B evaluates to true, S is executed as an atomic region and the
component then proceeds to the next action. If B evaluates to
false, the component is blocked and continues to be blocked
unless B becomes true later (because of the executions of other
components).

Yih-Kuen Tsay (IM.NTU) Concurrency: Hoare Logic (III) SSV 2010 15 / 23

The await Statement (cont.)

Proof rule:

{P ∧ B} S {Q}
{P} await B then S end {Q}

(await)

Proof outline formation:

{P ∧ B} S∗ {Q}
{P} await B then {P ∧ B} S∗ {Q} end {Q}

(await)

For a proof outline to be standard, assertions within an await
statement must be removed.

Yih-Kuen Tsay (IM.NTU) Concurrency: Hoare Logic (III) SSV 2010 16 / 23

An Example with await

· · ·
Q[0] := true;
await ¬Q[1];
/* critical section */
Q[0] := false;
· · ·

· · ·
Q[1] := true;
await ¬Q[0];
/* critical section */
Q[1] := false;
· · ·

Note 1: This is the “first half” of Peterson’s algorithm for
two-process mutual exclusion.

Note 2: Q[0] and Q[1] are false initially.

Yih-Kuen Tsay (IM.NTU) Concurrency: Hoare Logic (III) SSV 2010 17 / 23

An Example with await (cont.)

{¬Q[0]}
Q[0] := true;
{Q[0]}
await ¬Q[1];
{Q[0]}
Q[0] := false;
{¬Q[0]}

{¬Q[1]}
Q[1] := true;
{Q[1]}
await ¬Q[0];
{Q[1]}
Q[1] := false;
{¬Q[1]}

Note: interference free, but not very useful
We should look for assertions at the two critical sections such that
their conjunction results in a contradiction.

Yih-Kuen Tsay (IM.NTU) Concurrency: Hoare Logic (III) SSV 2010 18 / 23

An Example with await (cont.)

{¬Q[0]}
Q[0] := true;
{Q[0]}
await ¬Q[1];
{Q[0] ∧ ¬Q[1]}
Q[0] := false;
{¬Q[0]}

{¬Q[1]}
Q[1] := true;
{Q[1]}
await ¬Q[0];
{Q[1] ∧ ¬Q[0]}
Q[1] := false;
{¬Q[1]}

Note: looks useful, but not interference free

Yih-Kuen Tsay (IM.NTU) Concurrency: Hoare Logic (III) SSV 2010 19 / 23

An Example with await (cont.)

{¬Q[0]}
〈Q[0], X [0] := true, true; 〉
{Q[0] ∧ X [0]}
〈await ¬Q[1]; X [0] := false; 〉
{Q[0] ∧ ¬X [0] ∧ (¬Q[1] ∨ X [1])}
Q[0] := false;
{¬Q[0]}

{¬Q[1]}
〈Q[1], X [1] := true, true; 〉
{Q[1] ∧ X [1]}
〈await ¬Q[0]; X [1] := false; 〉
{Q[1] ∧ ¬X [1] ∧ (¬Q[0] ∨ X [0])}
Q[1] := false;
{¬Q[1]}

Note 1: “〈await ¬Q[0]; X [1] := false; 〉” is a shorter form for
“await ¬Q[0] then X [1] := false end”.

Note 2: conjoining the two assertions at the two critical sections
gives the needed contradiction.

Yih-Kuen Tsay (IM.NTU) Concurrency: Hoare Logic (III) SSV 2010 20 / 23

Lamport’s ‘Hoare Logic’

In this probably forgotten paper, Lamport proposed a new
interpretation to pre and post-conditions:

L. Lamport. The ‘Hoare Logic’ of concurrent programs.
Acta Informatica, 14:21-37, 1980.

Notation: {P} S {Q}
Meaning: If execution starts anywhere in S with P true, then
executing S (1) will leave P true while control is in S and (2) if
terminating, will make Q true.

The usual Hoare triple would be expressed as {P} 〈S〉 {Q},
where 〈·〉 indicates atomic execution.

Yih-Kuen Tsay (IM.NTU) Concurrency: Hoare Logic (III) SSV 2010 21 / 23

Lamport’s ‘Hoare Logic’ (cont.)

Rule of consequence (can’t strengthen the pre-condition):

{P} S {Q ′}, Q ′ → Q
{P} S {Q}

Rules of Conjunction and Disjunction:

{P} S {Q}, {P ′} S {Q ′}
{P ∧ P ′} S {Q ∧ Q ′}

{P} S {Q}, {P ′} S {Q ′}
{P ∨ P ′} S {Q ∨ Q ′}

Yih-Kuen Tsay (IM.NTU) Concurrency: Hoare Logic (III) SSV 2010 22 / 23

Lamport’s ‘Hoare Logic’ (cont.)

Rule of Sequential Composition:

{P} S {Q}, {R} T {U}, Q ∧ at(T)→ R
{(in(S)→ P) ∧ (in(T)→ R)} S ; T {U}

Rule of Parallel Composition:

{P} Si {P}, 1 ≤ i ≤ n

{P} cobegin
n

‖
i=1

Si coend {P}

Yih-Kuen Tsay (IM.NTU) Concurrency: Hoare Logic (III) SSV 2010 23 / 23

	Sequential vs. Concurrent Programs
	Proof Outlines
	Interference Freedom
	Auxiliary Variables
	Lamport's `Hoare Logic'

